THICK POINTS FOR PLANAR BROWNIAN MOTION
AND THE ERDOS-TAYLOR CONJECTURE
ON RANDOM WALK

AMIR DEMBO* YUVAL PERES'T JAY ROSEN! OFER ZEITOUNIS

ABSTRACT. Let 7 (z,r) denote the occupation measure of the disc of
radius 7 centered at x by planar Brownian motion run till time 1. We
prove that sup, <, T (z,7)/(r*|logr|?) — 2 as. as r — 0, thus solving
a problem posed by Perkins and Taylor (1987). Furthermore, we show
that for any a < 2, the Hausdorff dimension of the set of “perfectly thick
points” « for which lim,_o 7 (z,r)/(r*|logr|?) = a, is almost surely
2 — a; this is the correct scaling to obtain a nondegenerate “multifractal
spectrum” for Brownian occupation measure in the plane. The proofs
rely on a ‘multiscale refinement’ of the second moment method. As a
consequence of our results on Brownian motion, we prove a conjecture
about simple random walk in Z? due to Erdds and Taylor (1960): The
number of visits to the most frequently visited lattice site in the first n
steps of the walk, is asymptotic to (logn)>/w. We also determine the
corresponding “discrete multifractal spectrum”: For 0 < o < 1/, the
number of points visited more than a(logn)® times in the first n steps
of the walk, is n! @™o,

1. INTRODUCTION

Forty years ago, Erdés and Taylor (1960) posed a problem about simple
random walks in Z%: How many times does the walk revisit the most fre-
quently visited site in the first n steps? Denote by T),(x) the number of visits
of planar simple random walk to z by time n, and let T} := max,cz> T, () .
Erdés and Taylor [7, (3.11)] proved that

1T _ T 1
(1.1) — <liminf —2— <limsup—2—= < — a.s.,
4 — n—oo (logn)? n—ooo (logn)? =

and conjectured that the limit exists and equals 1/7 a.s. The importance
of determining the value of this limit is clarified in (1.3) below, where this
value appears in the power laws governing the local time of the walk.

The Erdés-Taylor conjecture was quoted in the book by Révész [19, Sec-
tion 19.2] but to the best of our knowledge, the bounds in (1.1) were not
improved prior to the present paper. As it turns out, an important step
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towards our solution of the Erdés-Taylor conjecture was the formulation by
Perkins and Taylor (1987) of an analogous problem on the maximal occupa-
tion measure that planar Brownian motion (run for unit time) can assign to
discs of a given radius. Perkins and Taylor also obtained upper and lower
bounds with a ratio of 4 between them, and conjectured in [17, Conjecture
2.4] that the upper bound is sharp.

In this paper we prove this conjecture of Perkins and Taylor as part of
a study of the fine multifractal structure of Brownian occupation measure.
The proof is based on a ‘multiscale refinement’ of the classical second mo-
ment method; since the second moment method is such a widely used tool
in probability, we believe that our refinement will have further applications
to other problems where the standard second moment method breaks down
due to high correlations.

We then establish the Erdés-Taylor conjecture by using strong approxima-
tion. Indeed, this derivation highlights the significance of the Komlés-Major-
Tusnddy [11] strong approximation theorems, and their multidimensional
extensions by Einmahl [6]; earlier approximations are not sharp enough to
obtain the Erdés-Taylor conjecture from our Brownian motion results.

Although the bulk of our work is in the Brownian motion setting, we
first state our results for simple random walk. A generalization to a class of
planar random walks is stated and proven in Section 5.

Theorem 1.1. Let S, = Z?:l X; denote simple random walk in Z?. Let
M(n,c) denote the number of points in the set {x : T,(z) > a(logn)?}.
Then,

T*
(1.2) lim —" =

A2 Tlog n)?2 ,  @.S.,

1
m
and for o € (0,1/7],

log M
(1.3) i 108 M(n, @)

=1—anr a.s.
n—00 logn

Moreover, any (random) sequence {z,} in Z* such that T, (z,)/T} — 1,
must satisfy
log || 1

(1.4) lim

a.s.
n—oo logmn 2

The last assertion of the theorem improves an estimate of Révész [19,
Theorem 22.8], and shows that the “favourite points” for planar simple
random walk by time n, are consistently located near the boundary of the
range (on a logarithmic scale); the analogous statement for simple random
walk on Z is contained in a well-known result of Bass and Griffin [1].

Next, we collect some definitions needed to state our Brownian motion
results. For any Borel measurable function f from 0 <¢ < T to IRQ, denote
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by ,ué its occupation measure:

T
wh(4) = /0 LA(fy) di

for all Borel sets A C IR%2. Throughout, D(z,r) denotes the open disc in
IR? of radius r centered at z, and {w;}4>0 denotes planar Brownian motion
started at the origin. Let = inf{t : |wy| = 1}. We write dim(A) for the
Hausdorff dimension of a set A.

Our results for planar Brownian motion follow; the first one was conjec-
tured by Perkins and Taylor [17].

Theorem 1.2.
Y(D(z,e
(1.5) lim sup L()z) =2, a.s.
=0sem? €2 (log 1)

Here one may replace § by any deterministic 0 < T < oo; this is the
form in which this problem was stated as [17, Conjecture 2.4]. This theorem
should be compared with the classical result of Ray, [18, Theorem 1]:

p(DO,2) 1

1.6 lim su =— a.s.
(16) L log 2logloglog X 2

Theorem 1.2 has an application to the problem of reconstructing the range
of spatial Brownian motion from the occupation measure projected to a
sphere; see Pemantle et al [16].

Recall that for almost all Brownian paths w, the pointwise Holder expo-
nent

) w . loguy (D(z,€))
(1.7) Holder(uf ) = lim ——4 =—=—

takes the value 2 for all points z in the range {w; |0 < ¢t < §}. Hence, as

explained in [3], standard multifractal analysis must be refined in order to
capture the delicate fluctuations of Brownian occupation measure and obtain
a nondegenerate dimension spectrum. However, the logarithmic corrections
required for spatial and planar Brownian motion are different. The next
theorem describes the multifractal structure of planar occupation measure.

Theorem 1.3. For any a < 2,

(1.8) dim{x € D(0,1) : lim M = a} =2—-aq a.s.

=20 2 (log 1) 2

Equivalently

(19  dmfo<i<o: 1imM:a}

=1-—a/2 a.s.
=0 £2 (log %)2 /



4 AMIR DEMBO YUVAL PERES JAY ROSEN OFER ZEITOUNI
Also,
: pg (D(x,¢€))
(1.10) sup lim sup SEYSNETC a.s
lz|]<l =0 g (log E)
Remarks.

(1.11)  dim {x € D(0,1) : limsup

(1.12) dim{m € D(0,1) : liminf

We call a point z € D(0,1) on the Brownian path a perfectly thick
point if x is in the set considered in (1.8) for some a > 0; similiarly,
t > 0 is called a perfectly thick time if it is in the set considered in (1.9)
for some a > 0.

Perhaps of greater significance than the numerical results in the the-
orems above, are the insights that their proofs yield on the nature
of thick points in the plane and the contrast with the spatial case.
In our study [3] of thick points for spatial Brownian motion, a key
role was played by a certain localization phenomenon: The balls of
radius € that have the largest occupation measure accumulate most
of this measure in a short time interval (of length at most €2|loge|®
for some b); This localization does not hold in the planar case, where
the balls of radius € with greatest occupation measure accumulate this
measure on a macroscopic time interval (of length longer than € for
any v > 0). During this time interval, the Brownian particle makes
excursions of essentially all length scales €”. These excursions create
substantial dependence between occupation measures of rather distant
discs; handling this dependence is the crux of our work.

By Brownian scaling, for any determinsitic 0 < r < oo, the set D(0,1)
and 6 can be replaced by D(0,r) and 6, = inf{t : |w;| = r}, without
changing the conclusion of Theorem 1.3. Similarly, one may replace uy
by p% in the statement of the theorem, for any deterministic 7' < oo.

For any = ¢ {w; ‘ 0 <t < 6} and € small enough, pg (D(z,€)) = 0.

Hence, the equivalence of (1.8) and (1.9) is a direct consequence of
the uniform dimension doubling property of Brownian motion, due to
Kaufman [9] (see also, [17, Eqn. (0.1)]).

The proof of our theorem will also show that
pg (D(z,¢))
72261}:2—a a.s.,
e—=0 g2 (log %)

and
pg (D(z, €))

5 = a} =2-a a.s.
e=0 22 (log %)

This is in contrast to the situation for transient Brownian motion, [3],
where the limsup and liminf results analogous to (1.11) and (1.12)
require different scalings.

We call a point 2z € D(0,1) on the Brownian path a thick point if x is
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in the set considered in (1.11) for some a > 0, and a consistently thick
point if = is in the set considered in (1.12) for some a > 0.
e Similarly we will see that

(1.13)  dim {IE € D(0,1) : limsUpM

5 Za}z?—a a.s.,
0 (tog D

and

: .. g (D(z,€))
(1.14) dlm{xED(O, 1) : liminf —*———"p" > } =2—-aq
e=0 g2 (log %)
As in the case of spatial Brownian motion, we have the following analogue
of the coarse multi-fractal spectrum:

a.s.

Theorem 1.4. For all a < 2,
. log Leb(z : g (D(z,¢€)) > ac?(log€)?)
lim
£—0 loge

=a, a.s.

The basic approach of this paper, which goes back to Ray, [18], is to con-
trol occupation times using excursions between concentric discs. The num-
ber of excursions between discs centered at a thick point is so large, that
the occupation times will necessarily be concentrated near their conditional
means given the excursion counts (see Lemma 3.1). Section 2 provides a
simple lemma, which will be useful in exploiting this link between excursions
and occupation times. This lemma is then used to obtain the upper bounds
in Theorems 1.2 and 1.3. In Section 3 we explain how to obtain the analo-
gous lower bounds, leaving technical details to lemmas which are proven in
later sections. The key idea in the proof of the lower bound, is to control ex-
cursions on many scales simultaneously, leading to a ‘multiscale refinement’
of the classical second moment method. This is inspired by techniques from
probability on trees, in particular the analysis of first-passage percolation
by Lyons and Pemantle [12]. The approximate tree structure that we (im-
plicitly) use arises by considering discs of the same radius r around different
centers and varying r; for fixed centers z,y, and “most” radii r (on a log-
arithmic scale) the discs D(xz,r) and D(y,r) are either well-separated (if
r << |z — y|) or almost coincide (if r >> |z — y]).

In Section 4 we prove Theorem 1.4 on the coarse multifractal spectrum,
while in Section 5 we prove Theorem 5.1 (and in particular, the Erdés-Taylor
conjecture). Sections 6-9 establish the technical lemmas used in Section 3.
Complements and open problems are collected in the final section.

2. HITTING TIME ESTIMATES AND UPPER BOUNDS

The following simple lemma will be used repeatedly. Throughout this
section, fix 0 < r; <r3, let & = inf{t > 0 : |w;| = r3}, and define

T:/O Lp(o,ry)(ws)ds .
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Lemma 2.1. For |zg| = ro,
(2.1) E™ (7/r}) =log(rs/ra),  for 11 <712 <13
For all k > 1,

1
(2.2) E™ (7/r})* < Kl[log(rs/r1) + 5]’“,
implying that for 0 < A < rfz/[log(rg,/rl) + %],

_ 1
(2.3) E™ () < (1 — M?[log(rs/r1) + 5])71 .
Proof of Lemma 2.1: By Brownian scaling, we may and shall assume
without loss of generality that r1 = 1. Due to radial symmetry, E*(7) =
u(]z|) is a function of |z| only, with u(r) satisfying

1 " -1,/
5 (W' +r7) = -1«
(2.4) { u(rs) =0,
for r € [0,73]. Solving for (2.4), one finds that
—r? 1
= +s5+logrs, r<1
2. = 2 2 )
(2.5) u(r) { logrs —logr, rg>r>1,

proving (2.1). Since u(r) < %+log r3, we have by the strong Markov property
that
k

E"o (7_'k) = kIE™® / H Lpo,1)(ws;)ds1 -+ - dsg,
0<s1 <<, <0 ;1

k—1
= klIE" (/0 H lD(O,l)(wSi)u(|wSk—1 )dsy - - d8k1>

<51<<5p-1<0 ;1
1
< k(i + log r3)E™ (?k_l) ,

proving (2.2) by induction on k. The bound (2.3) then follows by the power
series expansion of e, O

We next provide the required upper bounds in Theorems 1.2 and 1.3.
Namely, with the notation

Y(D(x, e
(26)  Thicksa = {z € D(0, 1) limsupL(;) >},
= 1
=0 2 (log )

we will show that for any a € (0,2],

(2.7) dim(Thick>e) <2 —a, a.s.,
and

Y(D(x, e
(2.8) lim sup sup M ,  @.S.

e=0  |z|<1l €2 (log%)2

(note that (2.8) provides the upper bound also for (1.10)).
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Set h(e) = €2|loge|? and

z(z,€) := pg (D(z,€))/h(e).

Fix 0 > 0 small enough (§ < 1/22 will do), and choose a sequence &, | 0
as m — oo in such a way that € < e~ ! and
(2.9) B(Ens1) = (1 — )h(n),
implying that €, is monotone decreasing in n. Since, for €,41 < € < €, we
have
h(€ny1) 1y (D(z,€n))

Bn)  lens)

it is easy to see that for any a > 0,

(2.10) 2(x, €n) = > (1 —90)z(z,¢),

Thick>, C Dy := {x € D(0,1) | limsup z(z, &) > (1 — d)a}.

n—o0

Let {z;:j =1,...,K,}, denote a maximal collection of points in D(0, 1)
such that infyz; |y — z;] > 6€,. Let 6o = inf{t : |wi| = 2} and A, be the
set of 1 < j < K, such that

(2.11) 2 (D(x;, (14 6)é,)) > (1 — 20)ah(é,).

Applying (2.3) for ri = (1 + 0)é,, 73 = 2 and A = (1 4+ §) 'r7?/|logé,| it
follows by Chebyscheff’s inequality that

P7 (g (D(0, (14 6)&n)) > (1 — 20)ah(é,)) < c& 1007,

for some ¢ = ¢(d) < oo, all sufficiently large n and any = € D(0,1). Note
that for all z € D(0,1) and €¢,b > 0

P(ug (D(z,€)) > b) < P~"(u¥ (D(0,€)) > b) .
Thus, for all sufficiently large n, any 5 and a > 0,
(2.12) P(j € Ay) < c& (17100

n
implying that
(2.13) EJA,| < ¢ {1710)e=2,

Let V,,; = D(zj,0¢,). For any z € D(0,1) there exists j € {1,... ,K,}
such that z € V, ;, hence D(z,€,) C D(zj, (1 + 0)€,). Consequently,
Un>m Ujea, Vn,; forms a cover of D, by sets of maximal diameter 2Jé,.
Fix a € (0,2]. Since V, ; have diameter 2J€,, it follows from (2.12) that for
y=2—(1-116)a >0,

00 00
E> Y Wyl < (20)7 ) &) < o0
n=m jeA, n=m

Thus, 07, > ica, [Vaj|7 is finite a.s. implying that dim(D,) < v as.
Taking 0 | 0 completes the proof of the upper bound (2.7).



8 AMIR DEMBO YUVAL PERES JAY ROSEN OFER ZEITOUNI

Turning to prove (2.8), set a = (2 + J)/(1 — 100) noting that by (2.13)

o0 o0 o0
> P(A > 1) <D ElA, <D E) <oo.
n=1 n=1 n=1

By Borel-Cantelli, it follows that almost surely, A,, is empty for all n. > ny(w)
and some ny(w) < co. By (2.10) we then have

pg (D(z,€))
sup  sup —————5-
€<éng(w) |z|<1 g2 (10g )

and (2.8) follows by taking ¢ | 0. L

3. LOWER BOUNDS

Fixing a < 2, ¢ > 0 and § > 0, let 6, = .(w) = inf{t : |w| = ¢},

w (P
I'c =Tc(w) :={z € D(0,c): lim M =a},
=0 g2 (10g %)
and & := {w : dim(T'c(w)) > 2 — a — §}.
In view of the results of Section 2, we will obtain Theorem 1.3 and (1.11)-
(1.14) once we show that P(&;) = 1 for any a < 2 and § > 0. Moreover,
then the inequality

lim inf supM imi M

=0 |gj<1 g2 (log )2 Czi<t 20 g2 (log %)2
implies that for any n > 0,

Y(D(x,e
lim inf sup M

>2(1-mn), a.s.
=0 |g|<1 g2 (log )2

In view of (2.8), these lower bounds establish Theorem 1.2.

The bulk of this section will be dedicated to showing that P (&
Assuming this for the moment, let us show that this implies P (&
With w§ := ¢ tw,2, we have that A0(w) = inf{c?t : | wey| =1} = .(w )
and hence

1) >0
) =1

C

w O(w®) 0(w®)

pg (D(z,€)) = /0 1{|w§—x|§e}d5:/0 Lijw 5, —ca|<eey 48

1 025(11)6) 1
2

Ylws—eal<ee} ds = 5 hg, (D(c, ce)).

& Jo
Consequently, I'.(w) = 'y (w°), so Brownian scaling implies that p = P(&,)
is independent of ¢ > 0. Let

€ :=limsupf&,-1 ,

n—oo
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so that P(£) > p. Since & € Fp_ and 6,-1 | 0, the Blumenthal 0 — 1 law
tells us that P(£) € {0,1}. Thus, p > 0 yields P(£) = 1. We will see
momentarily that the events &, are essentially increasing in ¢, i.e.,

(3.1) Vo<b<c PE\E)=0.

Thus, P(E\ &) <P(U,{€.-1 \&1}) =0, so that also P(&;) = 1.
To see (3.1), observe that for b < c,

Typ(w) \ {w; : 0y <t < 6.} CT.(w).
Hence, with Fj, = o({w;: 0 <t < 0p}),
P(& \ &) < EP(dim(Ty(w)) # dim(Ty(w) \ {wy : Oy < ¢ < 0:}) | Fp,) -

Applying the strong Markov property at time ), and observing that the set
I'y(w) is a.s. analytic, we thus obtain (3.1) as a consequence of a general
fact:

Any fized planar analytic set A satisfies

(3.2) dim(A\ [w]) = dim(A4) a.s.

where [w] := {wy : t > 0} is the range of planar Brownian motion w started
at any fized point.

To verify (3.2), suppose that dim(A) > «. Then there exists a Frostman
measure v on A, i.e., a positive finite measure such that v(B) < (diamB)“
for all balls B; see [8, page 130]. Since w does not hit points, Fubini’s
theorem yields that

B(u([w])) = IE/ 1ocrapy do(e) = /P(x € [w]) dv(z) = 0.

Thus v is a.s. carried by (A \ [w]), whence dim(A \ [w]) > « a.s. This proves
(3.2).

It thus only remains to show that P(€;) > 0. We start by constructing a
subset of I'y, the Hausdorff dimension of which is easier to bound below. To
this end, fix €; = 1/8 and the square S = [e1,2¢1]2 C D(0,1). Note that for
all z € S and y € SU {0} both 0 ¢ D(z,€1) and 0 € D(z,1/2) C D(y,1) C
D(z,2). Let ¢, = e1(k!)™3 = ¢; HLQZ_?’. Forz € S, k> 2 and p > € let
N (p) denote the number of excursions from 0D(z, €,_1) to 0D(x, €}) prior
to hitting D(z, p). Set nj, = 3ak?log k. We will say that a point z € S is
n-perfect if

(3.3) ne—k < NF(1/2) < NF(2) <np+ k, VE=2,... ,n.
For n > 2 we partition S into M, = €/(2¢,)* = (1/4)[[]~, % non-
overlapping squares of edge length 2¢, = 2¢;/(n!)3, which we denote by

S(n,i); 4 = 1,..., M, with z,; denoting the center of each S(n,i). Let
Y(n,i);i=1,..., M, be the sequence of random variables defined by

Y (n,i) =1 if z,; is n-perfect
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and Y (n,i) = 0 otherwise. Set g, ; = P(Y (n,i) =1) = E(Y (n,i)). Define
(3.4) A= |J S,

:Y (n,g)=1
(3.5) Fpn={J An,
n>m
and
(3.6) F=F(w)=()Fn

Note that each = € F' is the limit of a sequence {z,} such that z, is n-
perfect. Since
D(zp,e — |z —x,|) C D(z,€) C D(zp, €+ |z — x4])

for z € F, applying the next lemma (to be proven in Section 6), for the
n-perfect points z, and using the continuity of € — €?|log€|?> we conclude
that FF C I'y.

Lemma 3.1. There exists a §(e) = d(e,w) — 0 a.s. such that for all m and
all x € S, if © is m-perfect then

py (D(z€))

(3.7) a—0(e) < (log )2 < a+d(e), Ve > €.
To complete the proof that P(£1) > 0 it thus suffices to show that
(3.8) P(dim(F) > 2 —a—6) >0,

for any @ < 2 and § > 0. Fixinga < 2 and § > 0 such that h :==2—a—9 > 0,
we establish (3.8) by finding a set C of positive probability, such that for
any w € C we can find a non-zero random measure p,, supported on F(w)
with finite h-energy, where the h-energy of a measure v is defined as

(3.9) Gr(v) = / / & — | du(a) dv(y)

(see e.g. [13, Theorem 8.7]). The measure p = p,, shall be constructed as a
weak limit of measures v,,, where v, = v, ,, for n > 2 is the random measure
supported on A,, C F,, whose density with respect to Lebesgue measure is

Mp,
Fa(@) =D i Ly =1 Lzes(nyin}-
=1
Note that
Mp,
(3.10) E(va(S) = 3 4z 1P(Y (nyi) = 1)(260)? = €.
=1

Observe that if z € S is n-perfect then the number N7 of excursions
from 0D(x, €, 1) to dD(x,e;) prior to 0 is also between ny — k and ny + k.
Whereas it is this property that leads to Lemma 3.1, the use of a stopping
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time related to the z-concentric disks in the definition of N (p) simplifies
the task of estimating first and second moments of Y (n,4). These estimates,
summarized in the next lemma, are a direct consequence of Lemmas 7.1 and

8.1.

Lemma 3.2. Let l(i,j) = min{m : D(zp;,€n) N D(zyj,em) = 0} < n
There exists o, — 0 such that for all n > 2, 1,

(3.11) In,i > Qn = ing P(x is n-perfect) > e“Fon |
Te

whereas for all n and i # 7,

(3.12) B(Y (n,0)Y (n,9)) < Qaeyiyy ™ -

Furthermore, Q, > cqn; for some ¢ > 0 and all n > 2 and i.

In the sequel, we let (), denote generic finite constants that are indepen-
dent of n. The definition of [(i,7) > 2 implies that

(3.13) 2€1(3i,5) < [Tni — Tl < 2€l(i,j)—1

Recall that there are at most Cgel{l ; Cglﬁel € 2 points Zy,; in the ball of
radius 2¢;_; centered at ;. Taking hereafter I(7,7) := n, the last statement
of Lemma 3.2 shows that (3.12) holds (up to a multiplicative factor) also
when ¢ = 5. Thus, it follows from Lemma 3.2 that

E((va(S Z G i G 7B (Y (0,0)Y (0, 5))(262)"
i,j=1
(3.14) < CIZeela D < ¢ Zl“ < oo
b,j=1

is a bounded sequence (recall that §; — 0). Applylng the Paley-Zygmund
inequality (see [8, page 8]), (3.10) and (3.14) together guarantee that for
some b > 0, v >0

(3.15) PO~ >v,(S)>b)>20>0, Vn.
Similarly, for h=2—-a -0 € (0 2)

’I'L
B(Gn) < Oy Y D S I R
,_] 1 anQn,g nz ,]
(316) S 04 Z 64€l a—h— 6!(l]) < C Zlﬁ 2—h—a—4; < 00

i,j=1
is a bounded sequence. Thus we can find d < oo such that

(3.17) P(Gn(vn) <d)>1—v>0, Vn.
Combined with (3.15) this shows that
(3.18) P~ >v,(S) >0b, Gy(vn) <d) >v >0, Vn.
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Let Cp, = {w : b=1 > 1,,(S) > b, Gy (vn) < d} and set C = limsup,, C,. Then,
(3.18) implies that

(3.19) P(C) >v>0.

Fixing w € C there exists a subsequence nj — oo such that w € C,, for all £.
Due to the lower semicontinuity of G, (), the set of non-negative measures
v on S such that v(S) € [b,b '] and G(v) < d is compact with respect
to weak convergence. Thus, for w € C, the sequence v,, = v, ., has at
least one weak limit p,, which is a finite measure supported on F(w), having
positive mass and finite h-energy. This completes the proof of (3.8), hence
that P(gl) > 0. O

4. THE COARSE MULTIFRACTAL SPECTRUM
Proof of Theorem 1.4: Fix a € (0,2) and let
C(e,a) = {z : pf (D(z,¢)) > ae(loge)?} .

With &, as in (2.9), the bound (2.13) yields for some ¢; = ¢;(J) < oo and
any 1 > 0,

P(Leb(C(En,a)) > &) < clE| A, 6277 < ol 100
The Borel-Cantelli lemma and (2.10) then imply that

lim inf log Leb(C(e,a/(1 —6)))
£—0 loge

>a(l—104), a.s.

Taking § — 0 then yields the conclusion
log Leb(C(e, a)) S

>a, a.s.

lim inf
£—0 loge

Turning to a complementary upper bound, fix § > 0 such that a(1+6)® <
2. Let €5 = €6/(1 +0), Cs = C(e/(1 + 8),a(l + 6)®) and N(e) a (finite)
maximal set of x; € Cs such that |z; — x| > 2¢5 for all ¢ # j. Note that
{D(z;,€e5) : x; € N(e)} are disjoint and if z € Cy then D(z,e5) C C(e,a).
Therefore,

mes|N(€)| < Leb(Upec, D(z,€5)) < Leb(Cl(e,a)).

With d(e) = log |N(e)|/log(1/€), we thus see that
log Leb(C(e, a))

(4.1) lireri)iglfd(e) <2-— 1iIglj(l)lp Tog e
Let
Y(D(z,e
(4.2) CThicksq = {z € D(0,1) : liminfL()z) > a},
- e=0 22 (log %)
and wip
W(D(x,e
CThicky >q = {z € D(0,1) : inf i (D)) a}.

SEICTE
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The sets CThick, >, are monotone nonincreasing in -y and

(4.3) CThicks (16 C () CThicky,, >a(116)

for any -y, — 0. Recall that S, := {D(z;,3¢5) : x; € N(e)}, forms a cover
of Cs, so a fortiori it is also a cover of CThick,/(144),>a(144)2- Fixing €, | 0
it follows from (4.3) that U,>mS, is a cover of CThicks,(j445)1 by sets of

maximal diameter 6e,,. Hence, the n-Hausdorfl measure of CThicks g4
is finite for any 7 such that

oo oo
S IN(elel = Sl ) < oo,
n=1 n=1

that is, whenever > liminf_,( d(€). Consequently, by (4.1)

. : . . log Leb(C (e, a))
(4.4)  dim(CThicksq(1445)1) < hglglfd(e) <2- llrgnj[l]lp og .

Taking 6 — 0 and using (1.14) yields that

1
limn sup og Leb(C(e,a)) <a
£—0 loge

S
V)

as needed to complete the proof. ]

5. THE ERDOS-TAYLOR CONJECTURE

We present here the generalization of Theorem 1.1 alluded to in the in-
troduction. Recall that a random walk in Z? is aperiodic if the increments
are not supported on a proper subgroup of Z2.

Theorem 5.1. Let S, = Z?Zl X; be an aperiodic random walk with i.1.d.
increments X; € Z* that satisfy EX = 0 and E|X|™ < oo for all m < oo.
Denote by I' = EXX' the covariance matriz of the increments, and write
7w = 2n(detT) /2. Consider the local time,

n
To(z) =Y 1{g=0} (x€Z%)
k=1
and its mazimum T,, = max,cz> Tn(z). Let M(n,a) denote the number of

points in the set {x : T, (z) > a(logn)?}. Then,

: T, _
(51) nli)l’{.lom—ﬁp y a.s.,

and for a € (0,%1?1],

(5.2) lim
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Moreover, any (random) sequence {x,} in Z? such that Ty (x,)/T; — 1,
must satisfy

log|z,| 1

(5.3) lim a.s.

n—oo  logmn 2
(Note that for simple random walk ' = %1, so mp = ).
Proof of Theorem 5.1: We start by proving the lower bound
Lo Ty 1 1
. > = .S..
(54) hnrr_1>£f (logn)? = 2r(detT’)/2 o, 48

(For the case of simple random walk, this will prove the Erdés-Taylor con-

jecture, as the upper bound is already in [7, (3.11)].) Our approach is to use

Theorem 1.3 together with the strong approximation results of [6] and [11].
Fixing 0 > 0, it follows from (1.8) that a.s.

Y(D(z,e 7(D(z,€
lim inf sup al] (D(z¢)) > sup lim infM

- >2-0/2.
e=0 <1 €2|logel? zj<1 €20 €2|logel?

Hence,
Y(D(z,e
lim P(sup "2 P#:9)

—4§) =1.
e=0" <1 €2|logel?

Since P(6 < 1) > 0, it follows that for some g > 0, ¢, > 0 and all £ < ¢,

p(sup ML)

2—8) > 3pp.
o<1 €2[logel? )= 3

In particular, fix n > 0 and let ¢, = n~'/2_ Then for large n,

(5.5) P(su # (D(z:6n))

1<t €nllogenl? 2 2(1 = 9)) = 3po.

Since, by Lévy’s modulus of continuity,

lim P( sup |w —wy| > dey) =0,
nesoo (0§t£1| [nt]/n t|_ n)

it follows that for large n,

n
(5.6) P(sup 2j-1 L,/ —2l<(148)en

> 2(1 —6)%) > 2py .
S T 2 logeal? =0r)

By Einmahl’s [6, Theorem 1] multidimensional extension of the Komlds-
Major-Tusnady [11] strong approximation theorem, we may, for each n,
construct {Sy}}_, and {w;}o<i<1 on the same probability space so that

. |7 _
nan;oP(kgi}.(,n W/ — %I‘ Sk| > 56n> =0.

(For the case where S, is a Z? valued simple random walk, the original
construction of KMT [11] suffices, since rotating the axes by 7/4, one may
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view S, as two independent one-dimensional simple random walks of step
size 1//2.) Combining the above with (5.6), it follows that for large n,

(57) P( sup 2]21 l‘F*1/2SJ7y‘<\/E(1+26)En

> 2(1 - 6)*) > po.
JEIR? ne2|logen|? ( )

The number of lattice points in the ellipse {z : [T="/2z —y| < /n(1+20)e, }
is less than 7(detT')'/?n(1 4 26)3c2, so by the pigeonhole principle,

su E?ﬂ1\F—1/25ry\<\/ﬁ(1+25)sn
yere  m(detD)/2n(1 + 26)32

Since |logen| = (3 — n) log n, we infer that for large n,
(1-0)°(1 — 2n)*(log n)?
(1 + 25)37TF

Since a a path of length n contains [n9] disjoint segments of length [n
using independence of increments we deduce for large enough n that

P(T, <

) <1-—pp.

176],

. (L= 8% 20)(logn)?
P(T; < (1+26)%mr )
(=00 = 2 (logf )P\ _
= [P(T[TLH]S (1+2775)37rpg )} < (1-50)"!

An application of the Borel-Cantelli lemma followed by taking the limit as
d,m | 0 completes the proof of (5.4).
To establish (5.1), it remains to verify the upper bound
T 1

5.8 limsup——=5 < —, a.s..
If {S,} is strongly aperiodic, that is, if the increments are not supported
on a coset of a proper subgroup of Z2, then the local CLT in Spitzer [20,

Section 7, P9] implies that

logn
as n — 00.
r

™

(5.9) S PSE =0] ~
k=0

In fact, our standing aperiodicity assumption suffices to get (5.9):

Let h := g.c.d.{n : P(S, = 0) > 0}. From Spitzer [20, Section 5, P1] it
follows that either S, is strongly aperiodic (in which case (5.9) holds) or it
is periodic. Using Spitzer [20, Section 7, P1], we may infer that there exists
a 2 X 2 integer matrix A, and a strongly aperiodic random walk {gn} in Z2,
such that Sy, = AS), for allm > 1. (See the discussion in [10, pages 659-660]
for a similar argument). By the remark following [20, Section 5, P1], the
index of the subgroup AZ? in Z? is h; on the other hand, this index equals
|detA| by the counting argument in the proof of [20, Section 7, P2] (cover
Z? by h cosets of AZ?, and ‘use the transformation of volumes by the factor
|detA]). Denote by I' and T" the covariance matrices for the increments of
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iSn} and {§n}, respectively. Since h[' = AT A’ , the determinants of T" and

' coincide, and (5.9) follows.
Applying [2, Theorem 8.7.3] for the renewal sequence u, = P(S, = 0),
we deduce from (5.9) that for all large n,
1-9
(5.10) P(Vk € [1,n), S # o) 5 L= 9
logn

By the strong Markov property,

P[T,(0) > a(logn)Z] < (1 _ m)a(mgn)2

logn
(5.11) < e~(1-damrlogn _ , —(1-damr
Hence,
P(T: > a(logn)?) < EM(n, )
k=1
(5.12) < pt-(-damr

If a > mp ! then by taking 6 > 0 small enough, we ensure that the right-
hand-side of (5.12) is summable on the subsequence n,, = 2™. By the Borel-
Cantelli lemma we get (5.8) for this subsequence, hence by interpolation for
all n.

The proof of (5.2) is very similar: Fix ¢ < 2, n > 0 and g, = n" /2.
Recall the definition of N(g) from Section 4 for § > 0 small enough. The
argument of that section shows that for some p; > 0 and all n large enough,

P(6 < 1, N ()| > 4077 > 3py.
On this event we can find in each N(g,) a subset of at least 6352(1”)5_2
points that are 3¢, separated. By Lévy’s modulus of continuity, the mul-
tidimensional strong approximation of [6, Theorem 1] and the pigeonhole
principle, we may infer that for o = (a/2 — §')7. ", some &'(n,8) > 0 such
that ¢’ | 0 when 6 V7 | 0, and all large n,

P[M(n,a) > nl=om 2] > 5,

The lower bound follows by partitioning a path of length n to n’ segments
of length n'~% each, using independence of increments, the Borel-Cantelli
lemma and considering §,n | 0.

The corresponding upper bound follows from (5.12) by Markov’s inequal-
ity and an application of the Borel-Cantelli lemma, along the subsequence
N

Finally, for {z,} satisfying T},(z,) /T — 1, for any n > 0, a.s.

|| < I]?iai(|5k| < nl/2n,
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for all n large enough. On the other hand, the inequality (5.11) implies that

P( sup  T,(y) > a(log n)2> < COnl—2n—(1-d)arr :
ly|<n'/2-n

which is summable on the subsequence n,, = 2™ if arpr > 1 — 25 and § is
small enough. Invoking the Borel-Cantelli lemma and the monotonicity of
N SUD|y | <p1/2-n T,(y) it follows that a.s.

Sup|,<pt/2-n Tn(y)

li <(1-2n)mp"
el (logn)? = LI
so that (5.3) follows from (5.4). U

6. FROM EXCURSIONS TO OCCUPATION TIMES

Recall that N7 denotes the number of excursions from 0D(z,€;—1) to
OD(z,¢€) prior to § . Fixing a € (0,2) and ny = 3ak?logk we call z € S
lower k-successful if N;) > n; —k, and z € S is called lower m-perfect if
it is lower k-successful for all K = 2,... ,m. Recall that if z € S is m-perfect
then also

ng —k < Np <np+k, Vk=2,...,m,

and hence z is lower m-perfect.
With h(e) := £2|loge|?, the following lemma gives the lower bound in
Lemma 3.1.

Lemma 6.1. There exists a 0(€) = 0(e,w) — 0 a.s. such that for all m and
all x € S, if © is lower m-perfect then

(6.1) (a—d(€))h(e) < pg (D(z,€)), Ve > enm.

Proof of Lemma 6.1: Let §; = ¢;/k® and let Dy be a §g-net of points in
S. Let

/ 1/kS " —1/kS
Ek = €€ / y ek—l = €p_1€ / y
so that
(6.2) E;C > € + Ok, 6%71 < €p_1— Of.

We will say that a point ' € Dy, is successful if there are at least ny — k
excursions from 0D(z',€)_,) to 0D (z',€),) prior to 0. Let

€k,j = eke—j/k ,7=0,1,... 3klog(k + 1),

—2/k3 ~j/ko—2/k>~1/k°

and let e;j = €€ = €€ . We now derive Lemma 6.1

from the fbllowing lemma.

Lemma 6.2. There exists a 0(e) = 0(e,w) — 0 a.s. such that for all k and
x' € Dy, if ¥’ is successful then

(63) (@~ 3(ch;)h(eh,) < (D' b)), ¥i=0,1,... 3klog(k+1)
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Figure 1.

For assume that Lemma 6.2 holds, and let z € S be lower m-perfect. For
any k < m we can find 2’ € Dy, with |z —2'| < §;. Then, D(z,¢;) C D(2/,€})
and D(z', e} ;) C D(z,€e,_1), see (6.2) and Figure 1, so that the fact that
x is lower k-successful implies that z’ is successful. Thus (6.3) holds by
Lemma 6.2. One easily checks that d; + e;w- < €, for all j and any large k,
implying that D(z',€; ;) C D(z, €x,;). This, together with (6.3) and

h(er,j) < (1+6/k°)h(el, ;)
then shows that for all j =0,1,... ,3klog(k + 1),

(6.4) (a —0(eh;) — 13/k>)hlerj) < p§ (D(w,ex5)) -
Now for any €,11 < € < €, let j be such that € ;11 <€ <€ ;. Then,

py (D(z€)) _ pg (Dl epj1)) _ pg (D@, k1)
h(e)  — h(ek,;) T Blekga)

and Lemma 6.1 follows from (6.4) and (6.5).

Proof of Lemma 6.2: Suppose that ' € Dj is successful. Then there

are at least nj, = ny — k excursions between dD(z',€)) and dD(z', € _,),

where nj — oo as k — oco. Let 7, ; denote the occupation measure of

D(z',€;, ;) C D(2',€,) during the I-th excursion. Note that the 7, ; are
iid. and

(6.5) (1—2/k) ,

0
Py =P (/0 1{’thD($,,E;c,]-)}dt <a(l-2/log k)h(e}c,j),x' is successful)
ny,

<P ZTl,k,j < a(l—2/logk)h(ey ;)
=1
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Let
Ky, =log(e}_,/e,.) = 3logk — 2/KS.

With k large enough, using Stirling’s approximation for loge, = loge; —
3 log k!,
a(l —2/logk)|log e;c’j|2 < (1-1/logk)Kyny, .

Hence,
(6.6) Py i <P izkﬂ<1—1/1ogk
] — n;g Pt KkE;C’JQ =
Define 7, ; := K’Tkle—zjjz Then, a substitution in Lemma 2.1 with r; = ej,c,j,

To = €}, '3 = €)._y, reveals that for all £ large enough,
(6.7) E(Ti k) =1, E(77 ;) < 10,

SO that, with ;l,k,j = ?l,k,j — E('/r\l,k,j) we have

n
1 O~
(6.8) Pm’,k,j < P n—;c E Tl,k,j < —l/logk
=1

Since 71 ; > —1, it follows that for all 0 < § < 1,
E(e i) < 14 20°E(72, ;) < 1+ 2062 < 27

Taking 0 = \/(alogk), a standard application of Chebyschefl’s inequality
then shows that for some A = A(a) > 0, C; < oo and all 2’ € Dy, k, j

(69) Pml,kyj S CleiAk2/lng .

Since |Dy| < e“2F1°8k for some Cy < oo and all k&, it follows that

3klog(k+1) 0o

i Z Z Px’,k,j < 3C1 ZI{;QQC?kInge—)\k2/logk < 0.

k=1 j=0 a'eDy k=1
The Borel-Cantelli lemma, completes the proof of Lemma 6.2. ]

We turn to the upper bound in Lemma 3.1. The situation here is quite
similar to the lower bound. A point z € S is upper k-successful if N/ <
ng + k, and £ € S is upper m-perfect if it is upper k-successful for all
k=2,...,m. Since every m-perfect z € S is upper m-perfect, the following
lemma gives the upper bound in Lemma 3.1.

Lemma 6.3. There exists a §(e) = d(e,w) — 0 a.s. such that for all m and
all x € S, if © is upper m-perfect then

(6.10) pg (D(z,€)) < (a+d(e))h(e), Ve > €.
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Let now
E;c = ekeﬂ/kﬁ, Eg_l = ek_lel/kﬁ,
so that
(6.11) & <€k — 0k, €1 > €k 1+ Ok

We now say that =’ € Dy is u-successful if there are at most ny + &
excursions from 0D(z', & _,) to 0D(z', &) prior to §. We can derive Lemma
6.3 from the following lemma.

Lemma 6.4. There ezists a §(e) = 0(e,w) — 0 a.s. such that for all k and
x' € Dy, if ¥’ is u-successful then

(6.12) py(D(z' € ;) < (a+ (e ;)hler;), Vi=1,...,3klog(k +1).

Note that here we take 7 > 1 to insure that e;w- < €. As with the lower
bound, (6.12) leads, for z € S which is upper m-perfect, to

(6.13) ug (D(x, en5)) < (a +0(ef ;) + 13/k7)h(eny)

for all j =1,...,3klog(k + 1). Lemma 6.3 then follows as with the lower
bound, noting that we also have (6.13) for j = 0 since €50 = €41 3(k—1)log(k)-

Since 0 ¢ D(z,€;) for all z € S, with n] = ny + k, the proof of Lemma
6.4, in analogy to that of Lemma 6.2, comes down to bounding

n’k{ "
~ n
(S fiay 2 ok | < evirint (i (7))
=1

Noting that, by (2.2), for some C' < oo, all A > 0 small and k& large enough,
Tikj )| — ~n ~n
E (e 1,k,]> = 1 —|— Zz FE (Tl,k,j) S 1 + Zz FE (Tl,k,j + 1) S 1 + C}\ )
n= n=

the proof of Lemma 6.4 now follows as in the proof of Lemma, 6.2.
This concludes the proof of Lemma, 3.1. L]

7. FIRST MOMENT ESTIMATES

Fixing ¢ = 3a > 0, recall that ¢, = 1/8, e = k™3€ex_1 and ny = Ck®logk
for £ > 2. Recall also that N7(p) denotes the number of excursions from
OD(z,€ex—1) to OD(z,¢€;) prior to o5, = inf{t > 0 : wy € dD(z,p)}, and
x € S is called n-perfect when |N7(1/2) —ni| < k and [NJ(2) —ng| < k
for k = 2,... ,n. Throughout we let 5, , denote the corresponding hitting
times for {w%,l/ﬁt,t > 0} and set ¢y = 1/2. Our next lemma provides the
lower bound (3.11) on P(z is n-perfect) as well as a uniform (for z € 5)
complementary upper bound.
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Lemma 7.1. For all n > 2 and some 0, — 0,

Gn = P(nk—kSN,‘f(lﬂ) <ng+k;2<k<nloge <0m,1/2)
(7.1) = (n))=¢ 0.
Moreover, for some ¢ >0 and all z € S,
(7.2) an > Pz is n-perfect) > cqy, .

Proof of Lemma 7.1: Recall that eventually ny — k > 1, and that
0 ¢ D(z,e;) for all z € S. Hence, for z € S to be n-perfect, neces-
sarily oy, < 0,1/9 resulting with the upper bound in (7.2). Turning to
the lower bound, consider the event {G,2 < Gz, } which guarantees that
Ni7(2) = NjF(1/2) for all k. By the radial symmetry of the events con-
sidered and the strong Markov property of Brownian motion, the event
{022 < Gz, } is independent of both {Ni7(1/2);k > 2} and {04,¢;, < 04.1/2},
with P(6,2 < 04,,) = p3 > 0 independent of the value of z € S. Note that
P(04,e, < 04,1/2), for x € S, is a monotone decreasing function of |z| that is
positive for all such z, hence py := infres P(04,¢, < 041/2) > 0. The lower
bound of (7.2) thus follows (with ¢ = p3py > 0).

Consider the birth-death Markov chain {X;} on {0,1,2,... }, starting at
Xop = 1, having 0 as its absorbing state and the transition probabilities for
k=1,2,...

pe=PXi=k+1|X_1=k) = 1-P(X,=k—1X,=k)
(7.3) logle-1/ex)
log(€x—1/€k+1)

Let L1 =1 and for each k > 2,

oo
Ly = Z Lixi=k—1,X101=k} >

=0
denote the number of transitions of { X;} from state k—1 to state k. Observe
that py is exactly the probability that a path of w; starting at 0D (x, € ) will
hit 0D(x, €x41) prior to hitting dD(x, e 1), with (X;, X;,1) recording the
order of excursions the path makes between the sets {0D(z,¢;), k > 1}
prior to 0, 1/2. By the radial symmetry and the strong Markov property
of Brownian motion, ¢, of (7.1) is independent of z € S. Moreover, fixing
r € S, conditioned upon {0y, < 0412}, the law of {N[(1/2),k > 2} is
exactly that of {Ly, k > 2}.

Conditional on Lj; = ¢, > 1 we have the representation

L,
(7.4) Liy1 = ZYZ"
i=1

where the Y; are independent identically distributed (geometric) random
variables with

(7.5) PYi=j)=0—pe)pl,, §=0,1,2,...
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Consequently, {Lg,k > 1} is a Markov chain on Z with transition proba-
bilities

m+L\ ,,
(7.6) P(Lk+1:m\Lk:e+1):< o >pk (1 —pp)t,

for k > 1, m,¢ > 0 and P(Lgy1 = 0|Ly = 0) =1 for all & > 2. We thus
deduce that

gn = Pnp—k<Lpg<ny+k;2<k<n)
n—1
(7.7) = > [P ks = losr | L = )
Lo,...,ln k=1
[ —ni|<k
(where /1 = 1). The number of vectors (¢,... ,£,) considered in (7.7) is at

least n! and at most 3”n!. Since n~'logn! — oo and for some 1, — 0
n
[T tog(®) = (nt)™
k=2

we see that the estimate (7.1) on ¢, is a direct consequence of (7.7) and the
next lemma.

Lemma 7.2. For some C = C({) < oo and all k > 2, |m —ng41| < k+1,
[0+ 1—ng| <k,

k=S k=€
NCETT <P (Lppi=m|Ly=0+1) gcim.
Proof of Lemma 7.2: It suffices to consider £ > 1 in which case from

(7.3),

(7.9) Pk

(7.8) c1

B log (k) _1_0( 1 )
 log(k) +log(k+1) 2 klogk’’

and since n; —2k — oo, the binomial coefficient in (7.6) is well approximated
by Stirling’s formula
m! = vV2rm™e " v/m(1 + o(1)) .
With nj, = (k?logk it follows that for some C; < oo and all k large enough,
if |m — ngyq| < 2k, |€ — ng| < 2k then
m 2 4

1 ——1-=|< .
(7.10) 14 k'~ klogk
Hereafter, we use the notation f ~ g if f/g is bounded and bounded away
from zero as k — oo, uniformly in {m : |m —ngy1| < 2k} and {£: [ —ng| <
2k}. We then have by (7.6) and the preceeding observations that

(7.11)

(m + )™+t exp(—£I1("Z, pr))

werer 1— L
Vit PE L Pe) Vi log k

P(Lgsi=m|Ly=10+1) ~
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where
I\, p) =—=(1+X)log(l+A)+ AlogA — Alogp — log(1l —p) .

The function I(A, p) and its first order partial derivatives vanish at (1,1/2),
with the second derivative I))(1,1/2) = 1/2. Thus, by a Taylor expansion
to second order of I(A,p) at (1,1/2), the estimates (7.9) and (7.10) result
with
m 1 Cy
(7.12) 10790 - 2l < i
for some Cy < oo, all k large enough and m, £ in the range considered here.
Since |/ — (k% log k| < 2k, combining (7.11) and (7.12) we establish (7.8). [
In Section 8 we control the second moment of the n-perfectness property.
To do this, we need to consider excursions between disks centered at x € S as
well as those between disks centered at y € S, y # x. The radial symmetry
we used in proving Lemma 7.1 is hence lost. The next Lemma shows that,
in terms of the number of excursions, not much is lost when we condition
on a certain o-algebra g;f which contains more information than just the
number of excursions in the previous level. To define g;’, let 79 = 0 and for
i=1,2,... let

Toi—1 = inf{t > 1 9: w, € 0D(y,€)}

To; = inf{t > Toi—1: W € aD(y, El,l)}.
Thus, N/ (1) = max{i : 79,1 < 0y,1}. For each j =1,2,... ,N/(1) let

6(]) = {w7'2j72+t :0<t< 7251 — 7-2]?2}
be the j’th excursion from 0D(y, €;_1) to dD(y, €;) (when j = 1 the excursion
begins at the origin). Finally, let

Y
NV (D+1) _ {szle(l)th :0<t <oy — TNy -

We let J; := {I +1,... ,n} and take G/ to be the o-algebra generated by
the excursions e(1), ... e/ (1)) N/ ()+1),

Lemma 7.3. There exists Cy < oo such that for any 2 <1 <mn—1, |m; —
ny| <l andally €S,

P(NY(1) = mik € Ji| N (1) = i, GF)

n—1
(7.13) < Co [[ P (Lksr = mpgr | L = my) -

k=l

The key to the proof of Lemma 7.3 is to demonstrate that the number of

Brownian excursions involving concentric disks of radii e, k € J; prior to
first exiting the disk of radius ¢;_; is almost independent of the initial and
final points of the overall excursion between the ¢; and ¢;_; disks. The next
lemma, proven in Section 9, provides uniform estimates sufficient for this
task.
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Lemma 7.4. For | > 2 and a Brownian path starting at z € 0D(y,€;), let
Zy, k € Jy, denote the number of excursions of the path from OD(y,€x—1)
to 0D(y,ex), prior to T = inf{t > 0 : w, € OD(y,€1—1)}. Then, for some
c < oo and all {my : k € Ji}, uniformly in v € dD(y, €,—1) and y,
(7.14)

P*(Z, =my, k € Ji|wr =v) < 1+ d)P*(Zp = my, k € J)) .

Proof of Lemma 7.3: Fixing [ > 2 and y € S, let Z,gj), k € J; denote
the number of excursions from 0D(y,€ex—1) to 0D(y,€x) during the j-th
excursion that the Brownian path w; makes from 0D (y, ;) to dD(y,€_1).
The lemma trivially applies when m; = 0. Considering hereafter m; > 0,
since 0 ¢ D(y,e1) we have that conditioned upon {N/ (1) = m},

my )
(7.15) NW=3"2Y kelJ.

Conditioned upon g;f, the random vectors {Z,(cj ),k € Ji} are independent

for j = 1,2,...,m;. Moreover, {Z,gj),k € J;} then has the conditional
law of {Z;,k € J;} of Lemma 7.4 for some random z; € 0D(y,¢) and
v; € OD(y, € 1), both measurable on G/ (as z; is the final point of el the
j-th excursion from 0D (y, ¢,_1) to 0D(y, ¢) and v; is the initial point of the
(j + 1)-st such excursion eU*1)). Hence,

P(NI::;J(]') = Mk, ke Jl‘ le(l) = mlagly)

=S "[IP*(27 =m{, k€ i |wsi) = vy),

P j=1

where the sum runs over the set P; of all partitions my = Z] 1 m,g ), ke J.
By the uniform upper bound of (7.14) this is

< ZH +d P4 (2D =ml) ke )

P j=1
= (L+dd?)™P (N}(1) =my, k € Ji| N/ (1) =my) .

Since m; = O(I?logl) we thus get the bound (7.13) by the representation
used in the proof of Lemma 7.1. ]

8. SECOND MOMENT ESTIMATES

Recall that N7 (p) for x € S, k > 2, p > € denotes the number of ex-
cursions from 0D(z, €x_1) to 0D(z,€;) prior to o, , and as such N7 (1/2) <
NZ(1) < NE(2). With ny, = Ck? log k we shall write N E o if |IN —ni| < k.
Relying upon the first moment estimates of Lemmas 7.1 and 7.3, we next
obtain an upper bound related to the second moment of the n-perfectness
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property. In particular, the inequality (3.12) is a direct consequence of this
bound and (7.2).

Lemma 8.1. For g, of (7.1), some v, — 0 and all z,y € S such that
|z —y| > 2¢

(8.1) P (z and y are n-perfect ) < q2 (I .

Proof of Lemma 8.1: Necessarily [ > 2. We may and shall assume without
loss of generality that n is large enough for n,_o > n — 1. Furthermore,
assuming without loss of generality that f(n) := ((n —1)D)$Tm=1 > (p!)$Hon
is nondecreasing, it suffices by (7.1) to consider only | < n — 2. Similarly,
fixing z,y € S, we may and shall take the minimal value of [ such that
|z —y| > 2¢. In this case, D(y, ,)NOD(z,e) = 0 for all k # [ —1. Moreover,
0 € D(z,1/2) C D(y,1) implying that o, ;/5 < 0y 1, and, recalling the o-

algebras G/ | defined above Lemma, 7.3, {N}(1/2) L ng} are measurable on
Glyy forallk #1—1,1. With J;:={l+1,... ,n} and I; := {2,. -2,0+
1,...,n}, we note that

{z,y are n-perfect} C {N}(1/2) k ng, k € Il}ﬂ{N L ng, k€ Ji}.
Let I'([;) := {ma,... ,myp : |mp —ng| < k,k € L;} and ['(J}) := {mi41,...,
my, @ |mg —ng| < k,k € J;}. Then, using (7.13) in the second inequality and

the representation (7.7) of Lemma 7.1 in the third,

P

—~

xz and y are n-perfect )

< D E[P(NY(1) =m, k€ Jpa | Ny (1) = mug, 67 ) 5
I'(Jr)

NE(1/2) £y, ke Il]

< [Z H P (Lpy1 = mk+1‘Lk=mk)]P<N1f(1/2)’I\C’”k, kEIz)
r(J) k=I+1

< CO[Z H P (Lpy = mk+1‘Lk:mk)]
T(J) k=l+1

[Z HP L1 = mk+1‘Lk:mk)}

I(I) k=1

2
< Coq- Q[Z H P (Lyt1 = mk+1\Lk=mk)}
() k=l+1

(8.2)
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(where m; =1, go = ¢1 := 1). By (7.7) and the bounds of Lemma 7.2 we
have the inequality,

n—1
In = > TIP (Zrsr = mpga | L = m)
mo,... ,Mnp k)Zl
|mp—ng|<k

Vv

L < > H P (L1 = mps1 | Ly = my)
myy1— n1+1 D(Jia1) k=041

Vv

-2
Q10 sup H P (Lps1 = mp1 | Ly = m)
Imi g1 —npgy <UL F(JIJr ) k=1-+1

v

Q1 C72(20+3)” Z H P (Lgt1 = mpy1 | Ly = my,)
k I+1

(8.3)
Combining (8.2) and (8.3), we see that
nC2(21 2
P (z and y are n-perfect) < Cpq;_o [M] ,
qi+1

and (8.1) follows from the estimate of (7.1). U

9. CONDITIONAL EXCURSION PROBABILITIES

Proof of Lemma 7.4: Without loss of generality we can take y = 0.
Fixing [ > 2 and z € 9D(0, ;) it suffices to consider {my, k € J;} for which
P? (Zy, = my, k € J;) > 0. Fix such {my, k € J;} and a positive continuous
function g on 0D(0,¢€—1). Let 7 = inf{t: w; € 0D(0,€¢;-1)}, 70 = 0 and for
1=20,1,... define

Toiv1 = inf{t > 1 : w, € 0D(0,€41) UOD(0,€,-1)}

T2i42 = inf{t > Toi41: Wt € aD(O,El)} .
Set 5 = my41 and let Z,z, k € J; be the corresponding number of excur-
sions by the Brownian path prior to time 79;. Then, by the strong Markov
property at 75,

E*[g(wr); Zk = mg, k € J]

= B° [E" (g(wr), Zivt = 0% 2] = my, b € 7 > 7oy
and

P (Zy = my, k€ J)) = E° []E“’T?J (Zig1 = 0): 2L = my, k € Jj, 7 > 72]] :
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Consequently,
E*[g(w:); Zk = mg, k € Ji]

E* (9(wz); Z141 =0)
E® (Zj11=0) '

< P?*(Zy =my, k € J;) sup

lz|=€;
and, using again the strong Markov property at time 7o,

E” (gwr); Zipr =0) = E” (glwr)) — E7 (B (g(wr)); Zips > 1)

< E (g(wzr)) —E*(Z141 2 1) ‘ i|nf EY (g(wz)).
yl=e
Since E*(Z; 41 > 1) = p; whenever |z| = ¢, c.f. (7.3), it thus follows that

(9.1) E* [g(wr); Zi, = my, k € Jj]
< P (Zy=my, ke

E* (g(wr)) (1 - p)

Sup|$|:€l Em(g(w?)) p }

- — D

1nf\y|:q Ev (g(wi'))

Recall that

B glwo) = [ gk, (u2)du,
8D(0,el_1)

22 .
where K, (u,?') = T‘u_‘;,||2 is the Poisson kernel. Therefore, we get the Har-

nack inequality
SUply—q E¥(9(wr)) _ maxps—¢ ju=q Kooy (0,7) _ (a1 +e)’

(9.2) - < — = .
infly =, £Y(g9(wr)) — ming—, ju=c_, Keo, (4, y) (-1 —€)?

With ¢;_; = [3¢;, we get from (9.1) and (9.2) that for some universal constant
¢ < 00,

E° [g(wr); Z = my, k € J)] < (L+d7°)P? (Z = my, k € i) E* (g(wr))
and since this bound is independent of g we obtain (7.14). O

10. COMPLEMENTS AND UNSOLVED PROBLEMS

1. In [3] and the present paper, we analyzed Brownian occupation mea-
sure where it is exceptionally ‘thick’. To describe completely the multi-
fractal structure of the measure, an analysis of ‘thin points’ is needed.
In [4] we show that

¢ (D, 2)

10.1 lim in =1, a.s.
( ) e—0te0,1] €2/log %
We also show that for any a > 1,
Y(D
(102)  dim{z € DO, 1) : Timinf LPEE) v o 50 o

e0 £2/logl

We call a point z € D(0,1) on the Brownian path a thin point if x
is in the set considered in (10.1) for some a > 0. In contrast to the
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situation for thick points, the results (10.1) and (10.2) for thin points
hold for all dimensions d > 2.

2. The “average” occupation measure of small balls by planar Brownian
motion was recently investigated by P. Morters [14]. He showed that
py has an average density of order three with respect to the gauge
function () = 2 - log %, i.e., almost surely,

) 1

lim ——

rl0 log | log | /T

3. Computation of Laplace transforms is a traditional component of mul-

tifractal analysis, and in our work on transient Brownian motion [3]
Laplace transforms (exponential moments of occupation measure) were
used to determine the coarse multifractal spectrum. In the present pa-
per we obtained the coarse spectrum directly, as this was easier than
computation of exponential moments. We believe that

(10.3)

1/e , w D d
p'( ((x’ e)_de 2 at pY-almost every z.
®

€) le loge]

1 1 \2
lim | exp (A,ff (D(Wy, €)) /(e log 1/6)) dt = (ﬁ) a.5. YA < 1.
Presently, we can only show this for A < 1/2. The general result would
follow by analyticity arguments if one could prove that

1
(10.4) lim S[l]lp/ exp ()\,L/l” (D(Wy,€)) /(€® log 1/6)) dt < oo a.s. VA < 1;
€E—> 0
this ‘almost’ follows from Theorem 1.4.

4. Next, we discuss briefly the packing dimension analogue of Theo-
rem 1.3; consult Mattila (1995) for background on packing dimension,
Minkowski dimension and their relation. The set of consistently thick
points CThick>,, defined in (4.2), has different packing dimension from
the set Thicks,, defined in (2.6). Namely, for every a € (0, 2],

(10.5) dimp (CThicks,) =2 —a,

(10.6) dimp(Thicksq) = 2.

To justify (10.5), we use the notation of Section 2. The sets A,,, defined
in (2.11), satisfy

(107) |An| < (gn)(l—lhi)a—Q

for all large n, by (2.13) and Borel-Cantelli.

Recall the discs V,, ; = D(z;,0€,) defined after (2.13), and denote
Vn = Ujea, Vn,j- By (10.7), the upper Minkowski dimension of V; =
Np>¢Vn is at most 2 — (1 — 1160)a. It is easy to see that CThicks, C
Ug>1Vy, whence dimp(CThick>,) < 2 — (1 — 116)a. Since § can be
taken arbitrarily small, while dimp(CThick>,) > dim(CThicks,), this
proves (10.5).
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~ To prove (10.6), it clearly suffices to consider a = 2. Recall that
0 = inf{t: |w;| = 1}. For each n > 1, let

§2 (D, <)
e? (log 1)2

€

Vi = U {0<t<9:
0<e<l/n

>2—J/n}

It is easy to check, e.g. by applying Theorem 1.2 with an arbitrary T’
replacing # there, and using the shift invariance of Brownian motion,
that for any n > 1, almost surely V,, is an open dense set in (0,0); by
[3, Cor. 2.4], dimp(N,V,) =1 a.s. The set

w
(10.8) {ogtgé:mnmpﬂﬂggf%QZQ}
e—0 e2 (log %)
contains NV}, so it has packing dimension 1. Finally, Thick>s is the
image under planar Brownian motion of the set in (10.8); hence the
uniform doubling of packing dimension by planar Brownian motion,
see [17, Cor. 5.8], yields (10.6).

5. In Theorem 5.1 we assumed that the random walk increments have
finite moments of all orders. We suspect that finite second moments
suffice, but our method only gives the following result:

Under the assumptions of Theorem 5.1, except that the moment as-
sumption on the increments is relazed to E|X|™ < oo for some real
m > 2, we have

1-1 T* T* 1
(10.9) ﬁ <liminf —2— < limsup —2— < — a.s.
T n—o (logn)? nooo (logn)? — mr

6. In this paper we focussed on Brownian occupation measure in dimen-
sion two, the critical dimension for recurrence. Other natural random
measures for which we expect analogous results are the occupation
measure of the symmetric Cauchy process on the line, and the pro-
jected intersection local times for several planar Brownian motions.
Establishing such results is a challenging problem.
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