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Abstract

The asymptotic behavior of the empirical means and variances for the geometric and arithmetic
random walks are studied, when the underlying random walk is trended. Thus the effect of
misspecifications can be described, and two tests are proposed. The first test uses a classical
approach in model selection and is based on the comparison of estimated quasi likelihoods.
The second one is obtained by estimating some nuisance parameters in a Neyman-Pearson test.
Some bounds for the power functions are given, which suggest that the second test may be very
powerful and better than the first one. (¢) 1998 Elsevier Science B.V. All rights reserved.

Résumé

Le comportement asymptotique des moyennes et variances empiriques dans le cas de marches
aléatoires géométriques et arithmétiques est obtenu, lorsque la marche aléatoire sous-jacente
a une tendance. En conséquence, I'effet d’une mauvaise spécification peut étre analysé, et deux
tests sont proposés. Le premier test est d’inspiration classique en sélection de modéles, et est
basé sur la comparaison des vraisemblances estimées. Le second test s’obtient en estimant des
parameétres de nuisance dans un test de Neyman—Pearson. On donne des bornes pour la puissance
qui suggerent que le second test peut étre trés puissant, et est meilleur que le premier. ©) 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

The need of nonlinear models in time-series analysis has been early recognized
among applied statisticians. One of the first statistical nonlinear model can be found
in the seminal book of Box and Jenkins (1970), where it is proposed to apply the
popular Box—Cox transformation to linear time series. It is widely accepted that many
nonstationary time series are not linear, and Box and Jenkins (1970) have proposed to
transform the data before fitting an ARMA model (say) to the increments.

In many cases, the power parameter of the transformation is unknown and must be
estimated. The literature dealing with the Box—Cox transformation under the so-called
i.i.d. assumption is enormous, and have been surveyed in, for instance, Sakia (1992).
This transformation has been applied in many fields, from macroeconomic modelling
to biometrics studies.

In the context of time series, the model of interest is

(X)) — h(X— )=+,

X, =0 for £<0, where u is a real number, {#,},c7 a centered stationary process, and
{h;()},cr a family of power transformations. For instance, the popular Box—Cox trans-
formation (see Box and Cox, 1964) is given by h;(x)=(x* — 1)/, +#0, h;(x)=Inx
for A=0, but various transformations has been used in the literature (see Sakia, 1992).
In general, the family of transformations is chosen in order to nest the logarithmic
transformation (4 = 0) and identity (4 =1). Assuming that the function 4, is invertible,
we get that

!
X,‘h/-'1</,lt+21'],->. (1)
i=
Thus, the model is nonlinear because of the function h;'. The nonlinear structure of
this model is theoretically simple to handle, since it is given by the power parameter /.
If {n:}:cz is a linear process, considering A;(X;) yields a integrated linear one. Hence,
the nonlinearity (and thus its conditional heteroscedasticity) of the process is easily
taken into account by a simple transformation of the variables. Moreover, the incre-
ments {Ah;(X;)},»0 are a linear stationary process.

This model has been widely used in the statistical literature: see classical books in
time series as Box and Jenkins (1970), Brockwell and Davis (1987), the discussion
following Chatfield and Prothero (1973a), the answer of the authors (Chatfield and
Prothero, 1973b). Ansley et al. (1977) propose an algorithm for computing the max-
imum likelihood estimator. Forecasting models involving a power transformation has
been widely investigated, see among others Granger and Newbold (1976), Hopwood
et al. (1984), and Nelson and Granger (1979), for an empirical study. Guerrero (1993)
provides some interesting ideas for identifying the unknown degrees of the underlying
ARMA process and estimating this model. Burridge and Guerre (1996) have proposed
a simple procedure to test if a process is a monotonous transformation of a random
walk. Granger and Hallman (1991) consider various kind of nonlinear transformations.
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The model (1) can also be interesting in financial and economical applications, since
it is strongly linked to a particular class of diffusion processes. Indeed, assume that
X, =g(ps + oW(s)) where {W(s)}ser- 1s a standard Brownian motion, g;,:h;’,
and that 4;(x) is twice continuously differentiable with respect to x. This model is
the continuous counterpart of the discrete-time model (1). The Ito formula yields that
{X; }ser+ is a diffusion process such that

2
¢n:(wxw+awu»+f%gﬂw+aW@D>M+a¢0n+owu»dWU)

2uh(Xs)* = a?hl (Xy) g
= : r dW(s).
wxy St e

The drift and volatility functions of this diffusion process are some (polynomial if
A #0) functions depending on /. The drawback of this model is that the same param-
eter is used both drift and volatility. Nevertheless, it covers the ‘price in level” model
dX;=puds + adW(s) (4=1) as well as the ‘rate’ model dX;=/iX,ds + oX,dW(s)
(A=0). Moreover, Marsh and Rosenfeld (1983) have proposed a similar class of
diffusions in Finance.

In Economics, it is not very surprising that authors also tend to disagree on the trans-
formations that should be used for integrated time series. Layson and Seak (1984) pro-
vide three examples in the empirical literatures for growth (see Andersen and Jordan,
1968; Carison, 1978), short-run money demand (Hafer and Hein, 1980) and poverty
(Thornton et al., 1978%).

In the financial literature, Dyl and Maberley (1986) seem to disagree with the usual
rate formulation (emphasized among many others by Black and Scholes (1973) famous
article) and proposed to consider price-level change to estimate hedge ratios (see also
Black (1976), for a justification of the price-level formulation). It should be noticed
that the rate formulation although popular is not very attractive for the study of pure
arbitrage position, i.e., when the net acquisition price of the portfolio is zero. Clearly,
the choice of the formulation is crucial for price estimations of derivative, hedge anal-
ysis, and so forth (see Park, 1991).

Despite all these interesting features, little is known on the statistical inference
associated to (1). Guerre (1995a,b) suggest that the asymptotic behavior of estima-
tors should be rather untypical and complicated, due to a degeneracy of the empirical
information matrix. Moreover, many authors have focused only on particular values
of /,ie. 2=0or ~=1. Indeed, 2 =0 gives a geometric random walk and 4 =1 cor-
responds to the arithmetic one. This is the case for Dyl and Maberly (1986), who
are interested in determining whether it is better to consider price in level or in rate.
Layson and Seaks (1984) and Park (1991) both propose to test the null hypotheses
A=0ori=1.

4 One could also go back to Malthus to trace the conflict between level and rate formulations for integrated
time series, see Blaug (1979), for a presentation of Maithus’ works.
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Fig. 1

Considering the asymptotic behavior of the geometric (X* = X§ exp(ugt+0, Zf:, &)
and arithmetic (X" =X + pat + 0, Z;:l &) random walks suggests that it should be
easy to distinguish the two models at the sight of trajectories. This may be not possible
as illustrated by Fig. 1, which gives such paths for the same realizations of i.i.d.
A7(0,1) &s. This graphic has been obtained as follows. X%, t=0,...,1000 is computed
with gty =0.002, o, =0.015. Then we use g, =X¢, a2=3"XF — 11,)2/1001 to
compute the X;2’s, using the same ¢’s as for the X*’s. The two trajectories exhibit
similar features. It is also possible to obtain the same kind of graphics by proceeding
symmetrically, i.e. computing first the arithmetic random walk.

This is why we propose here a formal statistical approach, to test a geometric ran-
dom walk against an arithmetic one.® Our approach is based on quasi-(or pseudo)
likelihood, using the Gaussian likelihood without assuming the process is a Gaussian
one. Section 2 gives our basic definitions and notations. Because the quasi-likelihoods
of our two models depend upon the empirical mean and variance computed under
each assumption, and upon a Jacobian term, Section 3 is devoted to the asymptotic
study of these statistics. As a consequence, it allows to evaluate the impact of a mis-
specification.

Section 4 deals with testing issues. The interesting point is that two approaches
can be used in order to eliminate the nuisance parameters. The classical approach
for model selection 1s to compare the quasi-likelihood computed with the estimated

% Actually, our framework also allows to test A ==0 against /.= 7, io known.
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parameters. Our second approach is inspired from the well-known Neyman-Pearson
lemma, and is an attempt to eliminate parameters in critical region associated to the test
of two simple hypotheses. We provide some bounds for the probability of misclassi-
fication which suggest that our second approach is probably better than the classical
one. Model selection is briefly investigated in Section S, and proofs are gathered in
Section 6.

2. General framework and notation

Despite its simplicity, the Box—Cox model (1) may be difficult to estimate. Moreover,
the geometric and arithmetic random walks are the easiest to interpret submodels of (1),
and are two competing models which are frequently used in many applications, as
explained in the introduction. Thus, we consider the two following models, {&},51
being a strong white noise of variance I:

Ho =H.(pta,0.): Xy — Xi_y =ty + 0,8, t>0, X=X, for 1<0,

Hy =Hy(ug, 05): InXy —In X,y = pg + 04y, t>0, Xy =Xy for t<0,

with 0,>0, 6,>0, p;>0, u, >0, and where X; and X, are positive constants. [P,
and Py are the probability measures associated to H, and Hy, respectively. The model
/"= 5, 50,4, >0 Ha corresponds to arithmetic random walks,

I3
)(l:#at+GaZSI+XO-
i=1
X, behaves like u,t for large . Similarly, the model ¥" = |
geometric ones, with

0y >0, 41, >0 Hg contains

t
X, =Xy exp (,ugt + 0y Z 8,'> ,
=]

In X; being equivalent to pg¢. In both cases, the variables are upward trended since u,
and p, are strictly positive. The density of ¢ is denoted ¢. Note that our framework is
easily extended to the case where the power parameter of the Box—Cox transformation
is known. Indeed, if this parameter is set equal to Ag>0, Y,:X,’.") is an arithmetic
random walk.

It 1s further assumed that:

Assumption. (A1) E[¢;] =0, Var[¢;] =1 and there exists 6> 0 such that E|g, [**? < +o0.
(A2) There exists a positive constant ¢ such that sup,cg |¢(e)| < D.

(Al) implies that, for any values of (ug,0,),

E[/log|l — exp(—pg — 0g1)|[*] < +ox.
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The quasi-loglikelihood functions of our two hypotheses are

T 5 1 I 5
H,: La(ﬂaaaa):_zlnznﬂa - ﬁ Z(Xt ~ X~ )
a

—In[Xp 1 = pe)’,

Hy: Ly(pg, 04) = — Z]n|X, - ]n27m

—erzl In|X;| being a Jacobian term. These quasi-loglikelihood are computed under
the assumption that {},~, is Gaussian. Note that L, is computed using the absolute
values of the X,’s, because, under .o/, this process can be negative. Nevertheless,
{X.};>1 is positive in finite time almost surely because pg>0. Furthermore, other
similar transformations than In(-) can be used, without modifying too much our results.
In the sequel, the LR =LR(Hy, Hy) = LR(0y, itg, 6as a) = Ly — L.

For any process Y;, we denote its first difference process AY, =Y, — Y,_;. We also
define its empirical mean computed from T data by Y= ZL] Y,/T. The two loglike-
lihood functions depend upon the sample via the normalized Jacobian term In|X| and
the (quasi) maximum likelihood estimators of the parameters, which are

1[I X — Xo
Ao AY, — 2T 20 .
:ua T,:Z] ! T
o 1 Z
O-a:?—-'Z(A‘X'_tu)

t=1

1 L ln|XT\ ]]’llXo‘
i, == AllX|=———m——m0
ug T,:ZI l !‘ T s

1 I

== > (Aln[X,| = i)

Tl=l

Expressions of the maximum of the loglikelihood functions may be derived straight-
forwardly, and are

A . T X
Ly = La(fty, 62) = — 5 (In 2162 4 1),

o) ~ ~ T T A
Ly = Ly(fiy; 0p) = -tzl InlX,| — E(In 2nG, +1).

3. The asymptotic behavior of the estimators

We study the behavior of the estimators and of the Jacobian term under %" and .</".
The next theorem is the key result of this paper, and can actually be proven under the
weaker assumptions that the Donsker theorem holds for the partial sum of the ¢,’s, as
some appropriate laws of large numbers.
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Theorem 1. Let {W(s)}cpon) be a standard Brownian motion. Under (A1), we have:
(i) Under Hy € 9",
((n[X] = f(T + 12VT, 60 VT(fy — ), (In 65 = 28, THVT,

(111 laa - ﬁgT)//\/?)~

converges in distribution to
1
ag/ W(r)dr —o,W(1)/2,02,20,W(1),0,0 | .
J0

(ii) Under H,€ /™,
(In|X/T|, 765, T, — In T + In Xy, 62, fi,),
converges almost surely to

+00 X
Ing, — 1,3 In?| -
(n/’ta ag n X

t-]

.In ua,dﬁ,ua> :

Proof. See Section 6.

Under 4", 62 and f, diverge at an exponential rate. Actually, the proof of this
theorem shows that In &i is close to 2Insup, ., X,, which is 2In X7 :2T;2g + In X,
due to the trend. More precisely, we have In ¢ =2In X +0|pg(\/f ). 62 diverges because
the observations are not transformed via the logarithm function, and then differentiation
1s not strong enough to reduce the variability of the process. On the other hand, 6;
and f1, goes to 0 under /", because the logarithmic transformation ‘oversmooths’ the
sample, and thus eliminates the variability. From a statistical viewpoint, this suggests
that the geometric random walk which asymptotically maximizes L (ug, 0g) under /"
is degenerate (i.e. py; =0, g, =0), which may not be surprising at the sight of the
trajectories of the two models.

Theorem 1 is easy to extend to the case where the power parameter is known to be
Ag >0, that is changing .«/" into:

"(Ao): Y, =X/ is an arithmetic random walk, i.e.
X,/'O - /\/t/_(jl = MUa + 0.8, /\/1/-0 :Xaf'" for t<0
In this case, the new mean and variance estimates are

2y Ao
XI — X(J

A, (49) = T

2, - 1 I ) . 5
, 62(J) = 7 > (AX — ,(A))".
11

Under %", the behavior of (62(4), A,(%0)) is close to the one of (a"ﬁ,ﬁa), because
InX; = (In Y,)/4. For instance, In 62(4g) will be close to 24y In X7, as explained above.
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Under &/"(Ay), the asymptotic behavior of (6§,ﬁg) is easily deduced from the one
of the same statistic under .#/", and this empirical mean and variance also vanish
asymptotically.

The behavior of these statistics also extends to the case of dependent observations,
as long as some appropriate invariance principle holds. The variances appearing in non-
degenerate distributions in Theorem 1 are the same up to a factor limz_, ;. Var(Z,TZ,
& )/T (if strictly larger than 0). This correction can be estimated using a nonparametric
estimator of the spectral density at 0.

4. Testing procedures

Theorem 1 allows to study various statistics, on which asymptotic z-level tests of
4" against /" can be based. A popular approach is nonnested model testing relies
on the ratio of the two maximum likelihoods. According to Theorem 1, this statis-
tic has to be modified in order to reach asymptotic convergence under 4", and we
consider

LR =LR(6},,,6,) =In 6, — 1,7 — In 6y — In[X| + A,(T + 1)/2
=InG, —Iné, — In|X| — 4,(T — 1)/2.

Theorem 1 shows that, under %", I:}\{/(&g\/? ) converges in distribution to
I
- W(rydr+ W(1)/2,
0
which is a .47(0, Tli) random variable. Indeed, Theorem 1 shows that
Ing, — 1, T Ing,
6,VT  6,VT'

go to 0 in probability. Thus, the asymptotic distribution of interest is the one of

In|X| — 4, (T +1)/2
GV T '
which, by Theorem 1, is the one given above.

It is shown below that LR diverges to —oc under /", Thus, we shall consider the
test which rejects @™ if LR is small, i.e. if the data are in the critical region:

FR= LR, G4, iy, 62) = [LR <\/T/1264c, ),

P(A (0, 1) <cy)y=2.
Considering the problem of testing the simple hypothesis H, against H, under
Gaussianity suggests to introduce a Neyman-Pearson test, which has well-known
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optimality property. Neglecting possible negative values in the sample, this test is
based upon the statistic LR(0y, fig, 0a, tta)/T = (Lg — La)/T, i.€.

1 | RN N — 1 1 . . )
303+ 55 (6 (h #2)*) = In]X[ = > Inog — 5;3(62 + (g — He)?)-

Such tests typically reject " if LR/T is small. Because the critical region depends
upon the parameters in a complicated manner, it is unlikely to find an optimal test.
Eliminating the parameters using the estimators leads to a maximum likelihood ratio
test, and we propose a test based upon the comparison of the leading terms of LR/T
under both %" and .&7".

Under 4", In &g is close to 2In Xy =2u,T + 20, ZL, & + In Xy, and the details of
the proof of Theorem | show that 62 dominates .. Thus, the leading term in LR/T
is 62/(26%) under ¢". Under ./, LR/T is equivalent to —In|.X| (itself equivalent to
—InT). Thus, the approximation of In 6% above suggests the rejection region

{ 62/(262) — In|X| - exp(2ag\/7"a)}

(2)

exp(2u, T) 262

This critical region defines an asymptotic «-level test of H, versus H,. At this stage,
several problems arise due to the unknown parameters y, and ¢,. Because ¢, is a nui-
sance parameter under %", we replace 202 by 1 for the sake of simplicity. © Second, we
cannot change y, into fi,, because Theorem 1 gives that &ﬁ/exp(Z/igT ) converges to 1
under %", and the LHS of the equality would have a degenerate asymptotic distribution.
We use instead a suboptimal estimator of the mean based on the first 7, = [ pT'] obser-
vations of the sample (p € ]0,1[), namely f,(p) = (In|X7,|)/T,. We easily obtain that,
under %", \/T(ﬁg(p) — )= crg\/TZ,Tf_il ¢/T, converges in distribution to a,W(p)/p,
jointly with the statistics of the part (i) in Theorem 1. Thus, (In 67 — 24,(p)T)/2V'T
converges in distribution to a,(W (1) — W(p)/p), which is a .47(0,1/p — 1)-random
variable. This leads to consider the statistic

NP = NP(64, 1,( ) = (67 — In[X|)/exp(2fi,(p)T),

and the critical region

NP = NP3, 64, fiy ) 6a) = {ﬁ)<exp (21 T (l - 1)&gax> } .
P

The next corollary states the consistency properties of these two tests.

Corollary 1. Under (A2), the tests having for critical regions PR and NP are
asymptotically of level o and consistent for testing 4% against <7V,

If it is known that 6, >, >0 under /", it may be more relevant from a statistical viewpoint to change
G, into g, . g, can also be chosen depending upon 7.
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Proof. The fact that ZZ is asymptotically of level a has been proven above. Un-
der g“,(&g,ﬂg( p)) converges almost surely to (o, jz), and Theorem 1 yields that
In| X |/exp(2,(p)T) asymptotically vanishes, since y, >0. Thus

— Iné? - 24 T
lim Py(A2)= lim P (»«i—«——ﬁg(L <cx> =,

T—s+oc T—+400 2581/]'(]’/}7 — })

by Theorem 1.

We now deal with the consistency part. Recall that /T Gg converges to a positive
bounded random variable under .«/". Thus, it is enough to show that LR diverges
to —oc and that NP is a negative real number with a probability tending to 1. We
have

— n?7 —
[R =1Ind, — In(VTd,) + —“f X7~ InT

T—-1, In7T + In|X In7 + In| X,
_( By~ | o() 3 | Xol 3)

2 2 2 ’

and Theorem 1 gives that LR is equivalent to —In 7. Similarly, pT/i,(p)—InT con-
verges almost surely to In( pu, ), and

= 6 —In|X/T| -~ InT
e exp(2pT i, (p) —2InT)’

4)
and is equivalent to (—In T)/(7Tpu,), which is negative since u, >0. [

4.1. Study of the power

The Neyman—Pearson test is a most powerful test for H, against H, assuming {&}>
is a Gaussian sequence. It asymptotically rejects the geometric random walk if the ob-
servations are in the critical region given by (2). Theorem 1| shows that an appropriate
normalization under ./ for the statistics in (2) leads to rewrite this set as

62/(262) — In|X/T| <expueT + 20,V Tey) + 202 InT.

Considering the limit of {,(p) in (4) shows that our AP test asymptotically rejects
G if

62 — In|X/T| < T? pua exp(2641/(1/p — 1)Tc,) + 1InT,

&g\/f being a bounded (uniformly in 7') random variable. Thus, the AP test suffers
from a dramatic loss of power compared to the test defined by (2), due to the strong
difference of magnitude between the RHS of the two inequalities above. The reason
is that under .»/" the mean estimator fi,(p) goes to 0. In order to cope with this, we
introduce a new mean estimator, which is bounded away from 0. For instance, we can
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assume that it is known that ug>u>0 under %", which leads to consider the new
mean estimators

flg = g1, > p) + pll(A, <), fi(p) = (P (p)> ) + pl(fg( p) < p).

We have fi,(p)>p, and p can also be a sequence which goes to 0 with 7. This new

mean estimator g (p) defines a new critical region, say 4", for which we have the
inclusion

{&? —1n]X/T|<exp(2,uT+20g\/(l p—DTe,)+InT}C. 2. (5)

This shows that the .4"2 test is more powerful than NP (asymptotically at least).
The gain suggests that the loss of power is the consequence of a failure to take into
account the additional information that ug >y under %".

The proof of Corollary 1 also shows that the power of the PR test can be weak.
Indeed, (3) shows that under .o/, LR is equivalent to —In7, and then the L% test

asymptotically compares —In 7T to /1/ 12\/ E,T:] In? |X;/X;-1|cy- For usual values of
®, ¢y is negative, and it may arise that the former random variable has the same
order of magnitude, in which case the test may accept the hypothesis of a geometric
random walk. Indeed, the distribution of the previous random variable depends upon
the distribution of the ¢;,’s and we have not been able to obtain adequate bounds for
its tails in full generality. The item In® |X:/X;—1| can be large since it does not have
an exponential moment ( because of the strong divergence of the integral at X,_; =0).
A simple way to avoid the large values of |/7/1264¢,| is to restrict the parameter set
under %", that is to assume o, <&(G>0). In order to bound In G, from below, we also
assume oy >¢g >0. This leads to consider the new variance estimator

Gy = 651 (0 <8, <) + 51(3, >5) + al(6,< 7).

As before, (0,6) can depend on 7'. This gives for a <50%, \/Ta'gcazx/—fc?ca. This is
not sufficient for our purpose since we asymptotically compare —InT to +/7/126¢,,
and it is necessary to modify our statistic in order to achieve a higher rate of divergence.
This is easily done changing fi, into fi, in f]\(, since (3) shows that the redefined LR
diverges to —oc at a rate which is - uT/2

Let us define LR, ,‘?7? NP, 42 by changmg ag, g and fi(p) into Gy, fy
and fi,(p) in the definition of LR, J’JZ NP and #'2. Because (g, flg. Ho(p)) and
(og, ug,,ug(p)) have the same asymptotic behavior under %" if u, >p and 0<0, <3,
PR and AP are also asymptotic a-level tests of G against 2/, The following
theorem studies the power of these new tests, Z#° and NP* being the acceptance
region to the geometric-random walk.

Theorem 2. If po>p, g<o,<d under 4%, and (A1) holds, then PR and AP are
asymptotic a-level tests of 9" against <. Moreover, if (A2) holds, and o < 50%,
there exists a positive constant C depending upon the distribution of the €,’s such
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that, for H, € &7V, for any q€[0,1]:
Po(LH°) < P62 = 0® explqu(T — 1) + 2¢\/T/125¢,))
Il

T T—1 —_
L&V exp(—(l ~ g =l —q)\/f’12oc,>.

a

PN 2°) < Py(62 2qexp2u T + 2/(1/p — 1)Tée,))

cVT

a

+

exp(—(1 — q)exp(2uT + 24/(1/p — Téc,)).
Proof. See Section 6.

The number g has been introduced to optimally balance the two terms in the
bounds (if possible). As mentioned above, &, g and u can be some sequences depending
on T.

Because ¢, <0, the bounds in Theorem 2 suggest that the tests are not powerful if y
is close to 0, that is if the null hypothesis contains a geometric random walk without
trend. More precisely, |c,|é+v/T/(#T) must be small to have good tests. The case of
random walks without trend is left for further studies.

The bounds on the probabilities of errors depends upon the probability that 62 ex-
ceeds a large real number. Under Al, it goes to 0 as an exponential function of T.
Assuming that {¢,},, is Gaussian gives that 62 is a2y*(T — 1)/T, and thus

Pa(6; >x) < Eulexp(8;)] exp(—x),

E, exp(d2) being bounded independently of T>2. In this case, the two terms in the
bound of Pa(vﬂ;/”) have a similar order of magnitude and goes to 0 very fast due
to the exp(—exp(.)) function, reflecting the strong statistical difference between the
arithmetic and geometric random walks.

Thus, the bound for Pa((;ﬁ?fc) 1s likely to go to O faster than the one for P,( B%?C),
suggesting that the 47 test is better. The reason comes from the form of the regions
of acceptance, for which the following inclusions hold:

— . [ T-1 .
LR = {ln G, — In G, — In|X]| Zug(p)T + v T/lZagc,}

T -1

C{ln&a~lnX|>H—2 + 7‘/126ca+lng} (6)

NP = {6] —In[X] 2 exp2fi( p)T + 20/T(1/p ~ 1)Gc2)}

C {62 — X[ exp(2uT + 2/T(1/p — 1)dcy)}, (7)

which are obtained using inequalities similar to (3) and (5), by definition of Gy and
Ay(p) and since ¢, <0. The proof of the theorem works by estimating the probability
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that 62 and wm exceed quantities close to the RHS’s of the inequalities above.
Since the RHS of the NP test is the highest, the probability of exceedance of —In [X]
is smaller, and we obtain a bound for Pa(;@“) which decreases at an extremely fast
rate compared with the bound of Pa(,_@lc). Note that a similar bound can be obtained
for the Neyman—Pearson-type test (2) of Hy(p,d) against Ha(fa, 1 /v/2): This suggests
that the .47 test should enjoy some asymptotic optimality property, at least in terms

negative observations in the sample improves the .4+".2 test.

5. Model choice procedures

A model choice procedure is a decision rule which decides if the data are generated
by a geometric or an arithmetic random walk. It is consistent if the probabilities of error,
under /" and %" goes to 0 with 7. This problem may be viewed as an estimation
problem, with a new discrete parameter lying in { /", %"}.

A popular procedure is the ‘goodness of fit’ approach, which selects the model with
the smallest variance. This does not work here, because, under .o/", G, converges to
o, and 6, goes to 0. Since the model choice problem is also an estimation problem
the decision rule can be based on the likelihood functions: one can prefer the model
with the highest likelihood, that is /" if L,>L, and 9" if L,>L,. Since

Ly—L,=T(Iné, — Inéy — In|X]),

this approach corrects the comparison of variance criterium (based on Iné, -Inéd,) by
taking into account the Jacobian term In|X|.

Corollary 2. Under (A1), choosing the model which has the highest likelikhood is a
consistent model choice procedure.

Proof. Under 4", ([:g — L )/TVT) is equivalent to peT >0, by virtue of Theorem 1.
Under .&/":

(Lg—L)/T=1né, —In(VT6,)+ i T ~In[X/T[ ~InT,
and is equivalent to (—InT7)/2. (]

Thus, correcting In g, — In 6, with the Jacobian terms gives a consistent procedure.
The same modifications than the one leading to Theorem 2 allow us to bound the
probability of error under .2/". The study of the probability of error under %" is
more delicate. Nevertheless, model choice procedures can be based on the 5_7'3? and
A" tests by taking x going to 0 with 7. The results of Theorem 2 can be useful if
(&ca)/ﬁx/?) goes to 0.
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6. Proofs section
6.1. Proof of Theorem 1

Let [.] be the integer part and define {E7(7)},¢p0,17 as the linear interpolation of
the normalized partial sums up to T of the ¢,’s i.e.

S e+ (T — (T 1ol
NG

The Donsker theorem (see Billingsley, 1968, p. 68) says that {E7(r)},¢j0.1; converges
weakly to {W(#)},eq0,17 in C[0, 1] equipped with the supremum norm | . ||. Moreover,
by the Skohorod device, the variables can be reconstructed for each 7 on a rich enough
probability space such that the convergence holds almost surely for this norm.

ET(T) =

6.1.1. Geometric random walk with trend

The estimator ai, converges almost surely to aé by (Al) and the law of large

numbers. Because X7 goes to +oc, we have

Ind, = InXr +In 7 + In(1 — Xo/X7) =T, + op,(VT).
Moreover, since ., 1= T(T + 1)/2 and

In X, = pyt + 6, VTEr(t/T) + In Xy,

we have

%ET(I),

R 1
/lg = T(lan - lnXo):/lg +
InX — i (T + 1)/2

vT

The convergence of these quantities follows from the Donsker theorem, and from the
convergence of the Riemann sum of the Brownian motion to the corresponding integral.
Thus, we study (In 62 — 21,T)/ VvT. Let 62, =62 + ﬂé. We begin with

Oy T 7+1 In X()
=-=> Er(t/T)— Er(1 .
T ,=El T( ) Gg ZT T( ) \/T

Step 1. An approximation of In 62,. Because X; =X, _; exp(yg + 0y6), we have 63, =
Z,:1X12(1 exp(—ptg — 04¢,))?/T. and thus

| n (minl<,<7~(l — exp(—pg — agz:,))2> InéZ — 2Inmax; ¢, <7 X,
VT ! . v (8)
Iné2, — 2Inmax; <,<7 X 1 ( )
at = g‘——' l _ _ .
77 = max ( exp(—Hg — 0g&;))

Moreover,

In (lmm (1 —exp(—pg — ags,)f)‘ <2 max IIn|1 — exp(—pg — gge,)|],
<1<

<t<T
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In max (l —exp(—g — af__b,))z‘ <2 max_ n|1 — exp(—pp — age,)||-
<i<

1<t <T

(A1) and the Markov inequality give, for any small positive #:

— — — ) >
P(gﬁgrllnll exp(—Hg agaf)H/n\/—T‘)

E|ln|1 — exp(—pe — aq61)|[*H°
<TP(In)1 — exp(—pig — age)|| VT < A EZ(M‘T%W g I
which implies max; <, <7 [In|1 — exp(—pg — g8, )| =op(v/T). and (8) yields
(lnaaO—Z sup 1nx,)/f_op(1) 9)
| <t <

Step 2. (sup; , 7 InX, — ﬁgT)/\/T goes to 0. Because sup . W(s) is a bounded
variable, we have, using the ‘reconstructed’ version of the Donsker theorem:

sup ;< In Xy — 1, T

g
VT

1

= —= ( sup (4T + oo VT (4/T)) — T — agx/'fW(l)) +op,(1)
\/T I gT

] '
= T + o VTW (1) = 1T — 0 VTW(1)) + 03, (1)
= op,(1).

Step 3. In(1 — j12/6%,)/V/T goes to 0. Note that 62, — i = 2>0 and thus [i2/62, lies
in [0,1]. Moreover,

B X -X)r (1 - Xo/Xr ) _ P(1>
62 TXr—=Xr P T(1 —exp(—p — 0per)? F

T
because Xr goes to +o0 and P(p, + 6,67 =0)=0. Thus
02 In(1 ~ fi;/63,) > In(1 — Op,(1/T)).
and In(1 — 22/62)/vV'T = Op,(1/TVT).
Eg. (9) along with steps 2 and 3 end the proof of part (i) of Theorem 1.

6.1.2. Arithmetic random walk with trend

The convergence of 62, ji, and Ti,—InT+In(Xy)= In(X7/T)= In(u,+o0, Z,Ll &/T)
is a direct consequence of the strong law of large numbers. We now deal with In | X/T|.
The strong law of large numbers also yields that, for each event w, for each small 5
there exists a constant N = N(w,n) such for =N, we have

( - n)t<)(t Na"{’gaz{ (ﬂa"’"”)f»
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and thus

1L t e
Jim_inf 7 3> tog (1 - 71)7) < _lim_infin[X/7]

T—400

E—— 1 X t
< lim supln X/7]< _lim sup—Zlog((ua—l—n)—).
T——oc Tl‘:N T

The lower and upper bounds are convergent Riemann sums, the limit of the former
being

|
G )0 =00+ ) = 100 = i ) = 1.
0
Thus, lim7—_, .o In {X/T|=1Inu, — 1, almost surely.
The limit of 76} is the one of

X

-
71

-

.
A2 A2 2
Té, + Th,= Zl In
=

since Tﬁé goes to 0. Thus, we have to show that the series in the statement of the
theorem converges almost surely. First, note that P([X;/X;—] € {0,-+o0})=0, and thus
each item of the series is finite. Second, the strong law of large numbers gives that
X,/X,—1 converges to 1, and that, for ¢ large enough:

X’<<M&'y< @ﬁ ~
Xi— X (Ha = n)*(r — 1)

The upper bound has a L;-norm of order 1/7%, and the associated serie is normally
Li-convergent, which implies that the series in the theorem converges almost
surely. [

2

In

6.2. Proof of Theorem 2
We begin with the preliminary lemma:

Lemma 1. Under (Al) and (A2), there exists a positive constant C depending on the
distribution of the &’s such that, for x € R,
— T _
P(—In |[X| ;x)gcfeXp( ul)
(o2

a

Proof. We have

P(~In|X|=zx) = B(In|X|< —x)<P, (1<in£7_ In X < ~x>
<r<

M~

< 2 Pa(lX| < exp(—x))

|

i
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I

j=

T !

> [P’(— exp(—x)<Spat + 0, &< exp(-x))

t=:1

Lo —expl—x) —pat _ 1 exp(—x) — uat>
P{ ——————s———<— ) &< — .

Z ( O'a\/? \/‘Z:IP Gu\/;

t=1

Under (A1) and (A2), the density of Zle &/+/1 is bounded uniformly in ¢ and the
state variable, see Petrov (1975), by a constant which depends on the distribution of
the ¢’s. Thus

2Cexp(—x) L, 1

P(~In|X|=x)< —
a(—In | X]>x) . ; 7
T —
<2Cexp(—)c) ir-:c\/?exp( x). -
Oa Jo Vx Ga

Proof of Theorem 2. Using the inclusions (6) and (7), we have

— T7—1
Pa(iﬁs%c) <P <1n 6, —In|X|=(g+1—-¢q) (E + T/'12501> +In g)
< P62 =’ expqu(T — 1) + 29/ T/126¢,))

=
T—1 -
+ P, (—ln |X|=(1 - q) (ﬁ—z— + 7",/12669())

“exp(qu(T — 1)+ 2g+/T/12¢,))

N
=9
2N
0 P
WV

Q

T —1 —
exr><—(l - q)g—wé-— (I =-q)v T/126cx>,

PN P ) < P62 —In[X|2(q+ 1 — q)expuT +2/(1/p — 1)TGc,))
< P62 2 qexp2ul +21/(1/p — DTécy))
+Py(=In [X[>(1 — g)exp(2uT +21/(1/p — DTéc,))
< Pi(62=qexp(2uT + 2¢/(1/p — 1)Técy))

CVvT
-+ \/iexp(A(] —q)exp(2uT + 2+/(1/p — NTdc,)),

Ta

by virtue of Lemma 1. [J
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