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We investigate adaptive or evolutionary learning in arepeated version of the Gross-
man and Stiglitz (1980) model. We demonstrate that any process that is a mono-
tonic selection dynamic will converge to the rational expectations asset demands
if the proportion of informed traders is fixed. We also show that these learning pro-
cesses have a unique asymptotically stable fixed point at the Grossman-Stiglitz
(GS) equilibrium. The robustness of learning to noisy experimentation is studied
using Binmore and Samuelson’s (1999) deterministic drift approximation. Con-
ditions on economic and learning process parameters for adaptive learning to lead
to the GS rational expectations equilibrium are presented.

An important role of financial markets is to aggregate and transmit informa-
tion. Radner (1979) and others [see Jordan and Radner (1982)] address the
information processing role by characterizing rational expectations equi-
libria where individuals use the information contained in the market clear-
ing price. These models, however, do not address how individuals acquire
sufficient knowledge about economic structure, parameters, others’ objec-
tives, and others’ beliefs to make appropriate inferences from a market-
clearing price. In addition, rational expectation models typically assume an
extremely high degree of individual rationality. It is important, therefore, to
explore the robustness of rational expectations models to assumptions about
knowledge and rationality. In this article we explore how individuals can
discover and use an endogenous relationship through adaptive or evolution-
ary learning. We relax knowledge and rationality assumptions by modelling
behavior as resulting from a process of imitation and experimentation rather
than explicit optimization.

We investigate a repeated economy version of the Grossman and Stiglitz
(1980) model. The Grossman-Stiglitz (GS) model provides a good frame-
work for considering adaptive learning since it is the standard model of
endogenous information acquisition and is the basis for several other learn-
ing models like those of Bray (1982) and Bray and Kreps (1987). In the GS
model, traders in a one-period economy can choose to acquire a costly signal
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of the risky asset’s terminal dividend. Those traders choosing not to acquire
the signal make an inference about the signal from the market-clearing as-
set price. In our model, both the information choice and the inference are
determined by adaptive learning rather than optimization. Behavioral rules
of thumb are evolved by copying other traders and from experimentation.
We demonstrate conditions under which adaptive learning leads to behavior
that is similar to that observed in the GS rational expectations equilibrium.

Learning about equilibrium relationships is complicated because it in-
volves learning about other agents in the economy. Since other agents are
also learning, agents are learning about others’ learning and so on. Even
though exogenous variables are independent and identically distributed,
learning causes the endogenous price-signal relation to be nonstationary.
There are two approaches to modeling learning in this environment. The
first is Bayesian learning where beliefs about the endogenous parameters
are updated with each realization of the economy via Bayes’ rule. These
models are quite complex since an individual's Bayesian updating needs to
be consistent with the learning of all others. In the second approach, people
use past realizations to estimate the endogenous price-signal relationship
using some econometric technigue. While the econometric technigue is rea-
sonable, itis misspecified due to the nonstationarity induced by the learning.
For example, in least-squares learning, individuals treat the endogenous re-
lationship as if it were exogenous (and fixed) and estimate it using’OLS.
Adaptive learning most closely resembles the second approach since it is
non-Bayesian and involves copying past successful behavior which, due to
the nonstationarity, may not be successful in the current period.

There are several characteristics of adaptive learning that are appealing.
First, adaptive learning does not require assumptions of unbounded ratio-
nality or that individuals possess a complete and correct knowledge of the
economy. In fact, strong rationality assumptions are often motivated by ap-
peals to adaptation or evolution [e.g., Friedman (1953) or Lucas (1986)]. By
comparing adaptive learning to the GS rational expectations equilibrium, we
explore the conditions under which such a motivation is appropriate. In ad-
dition, by studying alternatives to complete rationality we can explore the
link between individual behavior and the aggregate behavior of markets.
This is in contrast to “behavioral finance” research that explains market

1 Examples of Bayesian learning are in Blume, Bray and Easley (1982) (an overview), Blume and Easley
(1993) and Vives (1993, 1995). Bray and Kreps (1987) models Bayesian learning in a GS-type model. In
their model, traders do not know a parameter of the economy (which is known in the GS model). They
demonstrate that Bayesian learning does convere to the GS rational expectations equilibrium. However,
as the authors point out, this result is not robust to slight perturbations of the model. In general, Bray and
Kreps can only conclude that beliefs updated using Bayes’ rule converge and put positive weight on the
true parameters. Examples of least-squares learning include Marcet and Sargent (1988, 1989). Evans and
Honkapohja (1998) consider more general econometric techniques. Bray (1982) considers least-squares
learning in a GS-type model. She determines the parametric restrictions for learning to converge to the
GS rational expectations equilibrium.
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phenomenon in terms of the cognitive psychology of individuals without
a formal aggregation link.Second, adaptive learning facilitates exploring
how an economy reaches equilibrium. As Bray and Kreps (1987) point
out, Bayesian learning can only address learning within an equilibrium and
not learning about an equilibrium. Third, adaptive learning also allows us
to easily model the information acquisition decision of traders in the GS
model. This would be difficult in either a least-squares or Bayesian learning
context. Finally, using technigues developed by Binmore and Samuelson
(1999), we can tractably model adaptive learning that incorporates both
imitation and experimentation in the GS economy.

Adaptive learning demands less of traders’ rationality. However, in order
to abandon unsuccessful behavior and imitate successful behavior, traders
need to have some measure of success (or fitness) of their behavior, as well
as have some information about others’ behavior. Consider the following
example of adaptive learning. Traders choose an initial behavior at random.
In this article, the behavior determines the trader’s information about the
dividend and parameters for her risky asset demand. Their collective be-
havior determines market-clearing prices and, in turn, individual utility or
fitness. Adaptive learning describes how traders update their behavior. As-
sume that individuals update their behavior periodically with lower fithess
individuals updating more frequently. People may be very unsophisticated
in their updating behavior. For example, if a trader is unsatisfied with her
behavior, she can simply copy the behavior of the first individual she meets.
In particular, she need not seek out high fitness individuals. This simple
adaptive learning process will produce the GS rational expectations asset
demands if the proportion of informed traders is held constant and when the
traders can also choose their information, the process has a unique asymp-
totically stable fixed point at the GS equilibrium. The key assumption in
this example is that lower fithess behavior is re-evaluated more frequently.
This is sufficient to ensure that the adaptive learning process is monotonic.
Monotonicity in the learning process is that growth rates in the proportions
of agents using the various possible behaviors are ordered by fitness. This
embodies the intuition that successful behavior is copied and/or unsuccess-
ful behavior is abandoned. The results we develop in the first portion of the
article are for any monotonic learning process.

In the previous example, it is important that traders can observe their
own fithess and the behavior of others. Financial markets provide an inter-
esting setting to investigate adaptive learning. Since feedback on returns or

2 See Shiller (1997) for a survey of this large area of research. Examples of using individual behavior
to explain market phenomena include using prospect theory to understand the equity premium puzzle
[Benartzi and Thaler (1995)] and overweighting recent evidence (the extrapolating fallacy or the recency
effect) to explain the apparent success of contrarian investment strategies [Lakonishok, Shleifer, and
Vishny (1994)].
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wealth is typically quite frequent, traders typically have a good measure
of their own fitness. Information on other traders’ fithess is also available.
For example, the information about the fitness of others can be inferred
from information on the distribution of aggregate wealth or, in contexts like
mutual fund management, from ranking services. Note that in the example,
information on others’ fitness is not crucial. The difficult assumption for
adaptive learning is that traders can observe other’s strategy. In some finan-
cial contexts like floor trading, behavior is public and observable. However,
since most financial trade is typically occurs through a large and anony-
mous market, directly observing behavior may be difficult. In this situation,
one might assume that information about the strategy of others is obtained
through hiring senior personnel, mergers, or trade publications.

Given one is willing to assume that traders can observe their fithess and
the behavior of others, the specific details of how the imitation occurs are not
important. The results developed in the first part of the article are quite ro-
bust: adaptive learning thatis a monotone selection dynamic produces to the
GS equilibrium. The second portion of the article investigates the robustness
of imitation-driven monotonic adaptive learning processes to noise from
random experimentation. Here, we find that adaptive learning is less robust.
In particular, we model imitation and experimentation using the techniques
of Binmore and Samuelson (1999). They use deterministic drift as a proxy
for small amounts of random experimentation. We demonstrate that for any
given economy, there are learning processes with drift that yield behavior
almost identical to the GS rational expectations equilibrium. More interest-
ingly, we show that for any learning process with drift, there exist economies
such that the limiting behavior of the adaptive learning process is distinct
from that of the GS equilibrium. In these situations, all traders become in-
formed. The development of these results illustrates the important economic
and learning process parameters. In particular, for the existence of the GS
rational expectations equilibrium, there must be some noise in the risky asset
supply. In order for adaptive learning with drift to lead to the GS rational ex-
pectations equilibrium, it is necessary that the noise in the risky asset supply
be large relative to the level of experimentation in the learning process.

The next section describes the repeated GS model. It describes a single
period of the repeated economy and traders’ rules of thumbs. Section 2
characterizes the convergence properties of monotonic learning processes
driven by imitation. Section 3 uses the Binmore and Samuelson (1999)
technique to consider the robustness of the imitation convergence results to
noisy experimentation. All proofs are in the appendix.

. Model

The economy is the Grossman and Stiglitz (1980) one-period endowment
economy where traders can choose whether or notto purchase a costly signal
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of the terminal dividend (risky asset payoff). Since we wish to investigate
adaptive learning, the one-period model will be repeated. Individuals learn
from previous generations, but the economy each generation faces consists
only of a single period. In standard economic models, once preferences,
information, and endowments are specified, behavior is fully determined as
the solution to an optimization problem. In contrast, adaptive learning indi-
viduals are specified by rules of thumb and a learning process specifies how
these rules evolve. This section characterizes the repeated GS environment
and provides the basis for modeling adaptive learning.

1.1 Repeated GS Model

At each daté a generation consisting of an unit-measure continuum of one-
period lived individuals trades a risk-free and a risky asset in a perfectly
competitive market. At the end of each period the payoffs on the securities
are realized and fully consumed. No wealth can be transferred between
generations. This preserves the one-period nature of the GS Ribdelers

have constant absolute risk aversion (CARA) preferences, with risk aversion
a, over their end-of-period wealth. The exogenous end-of-period payoff on
the risky asset, denotel, is given by

dt =W +1z, (1)

wherey; andz; are random variables. Since no wealth is transferred between
periods, the payoff and price of the risk-free asset are normalized to one.
The market clearing price of the risky asset is den®ed he supply of the
risky asset isg and is a random variable. The assumption of a stochastic
risky asset supply is required in the original GS model to obtain existence
of a rational expectations equilibrium. The random variabjes;, ande

are independently and identically distributed as uncorrelated, mean-zero,
and jointly normal with strictly positive variances;, o2, andoZ. Thez

ande are not observed dt However, traders can choose to observe the
common signal; by paying cost before trading.

Traders must choose whether or not they wish to become informed and
their demand for the risky assef,. Preferences are represented as CARA
utility over end-of-period wealth. Recall that there is no wealth transferred
between periods. L&dy andW,] indicate initial and terminal wealth for

3 A repeated one-period model is suggested in Grossman and Stiglitz (1980). However, it is important to
emphasise that although the economy is repeated, it is not a dynamic model like Wang (1993). A dynamic
models with adaptive learning are complicated since a component of returns, the future price, depends
on the state of learning in the future. LeBaron, Arthur, and Palmer (1997) simulate adaptive learning in a
dynamic market but restricts attention to myopic behavior. The repeated one-period model we study here
is similar to Bray (1982) and Bray and Kreps (1987). An alternative interpretation is one of infinitely lived
traders who are forced to consume before trading can begin again (tradadatividends are realized
and completely consumediat- 1/2).
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tradern in periodt. The utility of tradem is defined as
UMW) = —exp(—aWy). 2

End-of-period wealth is determined by the information choice, demands
for the risky assetx", and a budget constraint with initial wealt{}). That
is, W] = Wj + x{'(dy — P) — cly;. Note the trader pays the cost of
information only if she is informed (theylis an indicator function). If the
trader chooses to be informed, risky asset demands may depend on the signal
y; as well as the asset prid®. If the trader chooses to remain uninformed
asset demands may only depend on the price.

1.2 Individual Behavior
Traders choose whether or not they wish to purchase information and how
they wish to formulate their asset demands. We summarize their choice as
an element from the finite set witd + 1 elementsL." € {I} U LY, where
LY = (€3, ..., )% x (¢}, ..., eM1}.If L" = |, then the trader is informed.
Allinformed traders have the same asset demandi$. ¥ ¢" = (¢5°, ¢9%),
then the trader has chosen not to be informed and her asset demands are
determined using the two parametégg and 621. How these parameters
are used is described below. At generatiothe vectorg; describes the
proportion of the agents using each of the strategies. SN+1, theN + 1
simplex. Let; = ¢? represent the proportion of agents who are informed

N

(i.e., usingl). 1 — & = >_ ¢" is the proportion of uninformed traders.
n=1

The finiteness of Y simplifies the specification of the learning processes

considered in the next section. However, in Section 3, the assumption can

be relaxed as we focus directly on the average demand parameters.

The asset demands of an informed trader that maximize expected utility
follow directly from (conditional) normality and CARA utility. Since all the
informed traders observe the same sigpalthere is no additional informa-
tion available for them in the market clearing price. Informed traders need
notlearn the endogenous signal-price relation. Therefore, conditional on be-
ing informed, the asset demand schedule is fixed by utility maximization.
Asset demand schedule for an informed trade€Y= 1) is

_ Eldyl-P _
X = avidyl Y (e — P, 3

wherey' = (aoc?) 71,
The asset demands for an uninformed trader are more difficult to specify
since uninformed traders must make an inference about the signal from

4 Routledge (1995) considers a more general case where all agents, including informed traders, must also
learn the exogenous signal-dividend relation. This more general environment is investigated by simulating
an adaptive learning process using a genetic algorithm.
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the equilibrium asset price. If the price-signal relation is known (as in the
original GS model) then linear asset demands maximize expected tility.
However, in this model the price-signal relation is not ex ante known and
must be learned. One approach would be to specify prior beliefs about the
price-signal relation, updated via Bayes’ rule, and calculate utility maxi-
mizing asset demands [see Bray and Kreps (1987)]. However, | wish to
investigate adaptive learning in this article. Therefore we use an approach
similar to that used in least squares learning [see Bray (1982)]. Here the
functional form of the demands is specified and the parameters are learned.
Therefore, by assumption, the asset demand schedule for tradendi-
tional on being uninformed, is

X" =pY (e + P - P, (4

wheret" = (¢3°, ¢1%) € LY are the asset demand parametersjahd- 0
is constant across traders and across time.

Focusing on linear demands is a binding restriction. Bayesian demands
which maximize subjective expected utility are not linear. However, with
adaptive learning, behavior is modified based on success or fitness. As will
be demonstrated in Lemma 4, the linear asset demands are not inconsistent
with maximimal fitness. In addition, the linear demands are compatible with
demands in the GS model. This will allow comparison of adaptive learning
to the static GS rational expectations equilibrium.

1.3 Market Clearing

The linearity of the GS model allows the vectprto be summarized by
the proportion of informed traders and average demand paramet@rs
Market clearing price, conditional distributions, and utility depend only on
At andé;. Define the average demand parametees (£, £1t) as

Zt:l—)\wz oren. (5)

Not surprisingly, the linearity of the demands implies a linear market
clearing price relation.

Lemma 1. Given the proportion of informed tradeds and the average
demand parameters of the uninformfegthe market clearing price is linear
in signal y and asset supply @s

_A-rylat+rmy'vi—a
My + Q= 2)yY (L — L)

t

(6)

This requires that the asset demands of all agents are linear. Given this linearity, the conditional distribution
of y on observingP is normal. Optimal linear demands follow from this normality and the CARA
preferences. This is described in detail in Grossman and Stiglitz (1980).
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From the market clearing price, an inference about the signahn be
formed. In order to make the correct inference, one must kixowvhich

can be summarized By and¢;. This is more knowledge than our adaptive
learning traders possess. However, calculating the distribution of the signal
conditional on observing asset priég, and¢; is useful for the analysis that
follows.

Lemma 2. Giveng, the distribution of signal y conditional on observing
price P is normal with conditional mean[¥ | P, ¢] = E[y | P, A, {] =
L5, ) + €5 (1, £)P, where

030, 0) = (L+K0) €5 () — k(Lo

OG0 = A+KkM)) 7)) — k() (7)
A(l——k)y'yU05
k@) = (y"H202 402’ ®
” " ' (' + @ —=nyY) oy
R TN ) P
and conditional variance
0'820'2
VIy| P.¢] =V[y|P, 2] = - (10)

()0 + 02

1.4 Fitness

The intuition for adaptive learning, formally defined in Section 2, is that
successful behavior is imitated and (or) unsuccessful behavior is abandoned.
Inorderto model adaptive learning, we need to measure success. Thisisdone
by calculating the fitness of the learning states using the CARA preferences
for end-of-period wealth. In this article, fitness is defined as

f'(@0) = E[U (W) | ¢]. (1D

Fitness depends on the population statsince it determines the equi-
librium price-signal relation. Calculating fitness conditionalgiis appro-
priate since it is the actual price-signal relation, which depends otimat
determines the success of a behavior. In other words, in an adaptive learning
model, once an individual’s behavior is known, beliefs are not important.
Fitneses is not based on subjective expected utility, but on realized expected
utility.

5 In Blume and Easley (1992), the distinction between fitness and subjective expected utility is central
to their analysis of the evolution of portfolio strategies. A similar issue is raised in Biais and Shadur
(1998) where incorrect beliefs improve bargaining power, but fitness is not calculated with respect to
those beliefs.
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Itis an immediate consequence of Lemmas 1 and 2 that thwed?; con-
tain all the relevant information for calculating the conditional expectations;
that isE[U (W) | ¢¢] = E[U (W) | A, £¢]. The class of learning dynamics
we consider in this article are invariant to monotonic transformations of the
utility. Therefore we normalize the fitness of the informed traders to be one.
Define f' (¢) = f' (A, &) = 1 as the relative fithess of an informed trader
(L" = I)and f"(¢) = f"(A¢, &) as the relative fitness of an uninformed
trader using demand parametéfsgiven the population characterized by
¢ or Ay andyy.

Lemma 3. Normalizing the fitness of the informed trader as(#) =
f!(x.£) = 1, uninformed trader fitness is

2

1/2
f”(¢)=f”(x,£)=exp(ac)<m) (0 0), (12

where&: R® — [0, 1] and is jointly continuous except @t
Before discussing the fithess expression, it is helpful to calculate the asset

demands that maximize uninformed traders’ fithess. The following lemma
establishes that the fitness maximizing asset demands are linear as in Equa-

tion (4) with parameterg;(¢) andé(¢).

Lemma 4. Asset demands (), that maximize uninformed fithess are lin-
ear as in Equation (4) with parametet8 = ¢*(¢) = £*(1, £), where

R *O R *O U _ . x A
50, 0) =£3(A,£)”y—(u) & 0 =z;(x,g)3’y(u) Y yL)J/ )
13
y* () = (a(varly | P, ¢] +02)) . (14)

If the constany’V in Equation (4) happens to be (1) then the fitness maxi-
mizing parameters are the same parameters used to calculate the
E[y | P, A, £] inference. In this case, learning to maximize fitness is equiv-
alent to learning how to properly infer the signal from the market clearing
price. If yY £ y*(1), then the inference parameters in Equation (7) are
adjusted for the conditional variance of the dividend, which depends on the
proportion of informed traders.

Looking back at Equation (12), there are three elements that contribute
to the fitness of the uninformed trader. The firstis the cost of the information
that the uninformed traders do not bear. The second is the informativeness
of the price about the signal. This is determined by the size of the condi-
tional variance ofy given P. Note thatV[y | P, ¢] in Equation (10) is
decreasing in the proportion of informed traders. The information cost and
price informativeness play the same role in the GS model. The final term is
the function (¢", A, £). It captures any inference errors made by the unin-
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formed trader. Inference errors are whdn ¢*(¢), which, by Lemma 4,
always reduces fitness; thatsig", A, £) = 1 only at¢" = *(¢).7

1.5 The GS Rational Expectations Equilibrium

In order to compare the outcome of a learning process to the GS rational
expectations equilibrium, it is helpful to state the GS equilibrium in the no-
tation used thus far. In particular, the population st&tewith proportion

A* of informed traders, is the GS rational expectations equilibrium if it has
two features. The first is that uninformed traders make correct inferences
(i.e., no inference errors). For a given this is the fixed point of Equa-
tion (13) and is denoted™().8 The rational expectations equilibrium is
whereg" = 1—A*, for ¢" = ¢**(1*). The second condition is that traders
have no incentive to change their information choice. This condition is ex-
pressed as" (¢*) = 1. In this article, | will consider the economies where
the GS equilibrium is such that € (0, 1).

In order for this economy to replicate the GS rational expectations equi-
libria, the set of possible demand parameters for the uninformed mustbe rich
enough to include the GS equilibrium. Therefore we make the assumption
that the rational expectations solution is an element of the set of possible
demand parameters; that &7 (1*) € LY. In addition, we assume that for
any fixedx € [0, 1], the rational expectation demand parameters are con-
tained in the convex hull of the grid; that iék,*(x) e C(LY). As long as
the grid is sufficiently fine (large enougdf), it is not necessary that these
parameters lie exactly on the grid.

. Adaptive Learning

One period of the GS economy is characterized by the vegtoontaining

the proportions of the various behaviors. We now focus on the adaptive
learning process that governs the evolution ofghen this section, | will

focus on learning driven by imitation. The intuition of adaptation is that
successful behavior is copied and (or) unsuccessful behavior is abandoned,
resulting in a higher growth in the proportion of the population following
successful behavior. | will consider the convergence properties of adap-
tive learning and give a simple example of an adaptive learning model. In

7 From the proof of Lemma 3, note that absolute utility is the expectation of a squared normal random
variable and it need not be finite. Therefore the funcigmstrictly positive and continuous as long as the
slope inference errors are nottoo large. As the slope-based inference errors become large the absolute level
of the uninformed expected utility approaches negative infinity and the ratio of informed to uninformed
utility approaches zero.

8 The existence and uniqueness of the fixed point is established in Grossman and Stiglitz (1980). In this
article, the existence and uniqueness follows directly k@) > 0 and the linearity in Equations (7)
and (13).

1174



Adaptive Learning in Financial Markets

this section | will assume; evolves according to emonotone selection
dynamic g.°

Definition. Let g SN*! — RN+L,

d f nANn
%:ﬁtg (1) (15)

is a monotone selection dynamic if it satisfies forgat SN**

(1) Continuity: g is Lipschitz continuous
(2) Simplex restrictionz¢"g" =0

(3) Regular: d¢) is bounded for alpy ¢ SN+
(4) Monotonic: forall L", L™ e {I} x LY

') > =" = g > (=)39" ) (16)

The continuity ensures that the differential equation in Equation (15) has
a unique solution. The second condition ensures ¢ghaemains on the
simplexSN+1, The assumption that growth rates are finite implies that any
behavior is never literally abandoned and novel behavior is never intro-
duced. Therefore we will restrict our attention to initial populations where
all behavior is represented [i.@g < interior(SN*1)]. These three condi-
tions are technical. The crucial economic assumption is the fourth condition.
The monotonicity links the fitness to growth rates and relates the dynamic
to learning. The crucial assumption is that better strategies are imitated
more frequently and (or) bad strategies are abandoned, resulting in a higher
growth rate for better strategies. How traders may implement this algo-
rithm in a financial market is discussed after presenting the results and an
example.

2.1 Convergence Properties of Monotone Selection Dynamics

In order to understand the properties of learning, we consider the choice be-
tween being an informed and uninformed trader separate from the choice of
inference parameters. For a moment, fix the proportion of informed agents
at some arbitrary level,. Consider the selection dynamg;,that is mono-
tointic for alln > 1 with the exception thag® = g' = 0 (i.e., A, is con-
stant). The following proposition establishes a sufficient condition for the
parameters of the economy that implies adaptive learning will converge on
the rational expectations parametérs (). These parameters produce the
same demands as in the standard GS rational expectations equilibrium with

9 Since the repeated GS model is discrete, the differential equations are the limit of difference equations.
It is more convenient to use differential equations. See Weibull (1995) for a discussion of difference
equations in evolutionary game theory.
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a fixed and exogenously specified proportion of informed traders. Define
k(1) using Equation (8) as

*(h
Y (U k(). (17)
y

k(v =

Proposition 1. For a monotone selection dynamic, with fine enough grid
of strategies (large N), holding fixed the proportion of informed agents and
for any initial population: ifk(1) < 1 the adaptive learning will converge
such that all uninformed traders are using a strategy arbitrarily close to the
GS rational expectations demand parameters.

The proof of Proposition 1 relies on the fact that the fithess maximiz-
ing demand parameteré(¢), are a linear function of the average de-
mand parameters. In particular, sirce< 1, extreme demand parameters
(i.e., on the boundary of the convex hull b¥’) are never fitness maxi-
mizing and their proportionate use in the population will decline under a
monotone selection dynami€.Once the use of the extreme parameters
declines, they have a vanishing influence on the average demand parame-
ters. Now, the next-to-extreme parameters are never fitness maximizing. In
this way, a monotone selection dynamic hones in on the rational expecta-
tions demand$! Finally, . — 1 impliesk < 1. Thus, for any economy,

one can always fix a proportion of informed tradershigh enough such

that the uninformed traders’ demands converge to the rational expectations
demands.

The next proposition builds on this result to demonstrate that the GS
rational expectations equilibrium, where we do not constraint the proportion
of informed agents, is the unique asymptotically stable fixed point of any
monotonic selection dynamié.

Proposition 2. For any monotonic selection dynamic, the GS equilibrium
¢* is asymptotically stable where the proportion of informed traders con-

10 The conditiork <1 is identical to the condition in Bray (1982) for the convergence of intermittent least
squares learning. In Bray (1982), traders update their demands by using the parameters from an OLS
regression on the dividend-price observations. In the intermittent form of this learning, traders have a
long (infinite) series of price-dividend observations before adjusting their behavior. In this case, Bray can
appeal to the consistency properties of OLS estimates. In an incremental form of OLS where agents update
their parameters each period, the convergence results no longer tlequiteAnalogously, in our model,
it may be possible to relax the requirement that 1 if fitness was defined based on the realized utility
and not expected utility. Finally, from Equations (8) and (17), note that changing the arbitrary constant
yY does not changle and has no affect on convergence.

11 This proof is analogous to the proof of Samuelson and Zhang (1992) showing that monotone selection
dynamic eliminates iteratively dominated strategies.

12 The standard definitions for dynamic systems are used. See Hirsch and Smale (1974) fordistails.
stationary point or dynamic equilibriuraf Equation (15) if¢p"g"(¢) = 0 for all n. ¢ is asymptotically
stableif there exists a neighborhod@ of ¢ such that all trajectories of Equation (15) that originat€in
converge tap.
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verges to the GS equilibrium from abaye — A* from above). In addition,
if the grid is fine enough (large enough NyJ; is the only such point.

If . < A*, uninformed traders always have lower fitness than informed. If
A > A* and uninformed traders are using appropriate inference parameters
[i.e., from Equation (13)], then uninformed traders have a higher fithess than
the informed traders. This is due to the conditional variance of the signal
conditional on price decreasinginSince growth rates are related to fithess
under a monotonic selection dynamicmoves toward.*. The monotonic
selection dynamic also drives inference errors to zero. Close to the GS
equilibrium, £**(1*) are the best demand parameters and are eventually
adopted by all uninformed traders. Since the proposition only establishes
asymptotic stability and not global attraction as in Proposition 1, it is not
necessary to assume thak 1. Finally, the GS equilibrium is the unique
stable point since it is the only situation where there does not exist some
fitness-improving behavior. For example= 1 is not asymptotically stable
since close ta. = 1, uninformed traders using demand parameters close
to £**(1) will have higher fitness and therefore the proportion using these
parameters will grow.

The reason that approaches.* from above is that inference errors
(which reduce the uninformed fitness) are nonzero before learning has con-
verged. Informed and uninformed fitness is equal only whe® strictly
abover*, which compensates the uninformed traders for the nonzero infer-
ence errors. This trajectory faris consistent with the experimental asset
market result in Sunder (1992). In that article, the proportion of informed
traders was held constant and the cost of information was determined in
equilibrium. In Sunder’s experiment, the equilibrium cost of information
approached the rational expectations equilibrium cost from above. This is
consistent withh approaching.* from above given the constant cost of in-
formation in our model. Oddly, Sunder observes that when the cost of infor-
mation was fixed, the failed to converge to its rational expectations level.

2.2 An Example of a Monotone Selection Dynamic

We can use Bjornerstedt and Weibull (1996) to construct an example of a
monotonic learning process to highlight the important behavioral assump-
tions of adaptive learning in a financial market. Assume individuals cur-
rently using behavioL" choose to revise their strategy with probability
o"(¢). Giventhey choose to reevaluate their behavior, they will choose strat-
egy L™ with a probability given by (¢). Both of these probabilities can
depend on the current populatign(and therefore depend on fitness levels,
average inference parameters eté $ince there is a continuum of traders,

13 We need to assume that the functignands are Lipshitz continuous.
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if we assume enough independence in individual updating, we can appeal
to the law of large numbers to produce the following selection dynamic:

dt

A monotone selection dynamic follows from specific assumptions ghout
andr . For example, suppose that people with lower fithess are more likely to
reevaluate their strategy. That is, % ¢) = po(f"), wherep : R — (0, 1)

and is strictly decreasing in fitness. In addition, assume that a trader that
is updating her behavior simply adopts one strategy from the population
at random. That is, people copy the behavior of the first person they meet
regardless of that person’s fithess. Appealing again to the large number of
traders, this implies that;, = ¢™. Putting these two assumptions into
Equation (18) yields:

d¢n n m m n
G =¢ (;qb p(f™ — p(f )>. (19

d n
DY M) B) — (B 18

Sincep is a decreasing function of fitness, the dynamic is amonotonic selec-
tion dynamic and therefore has the properties used to derive Propositions 1
and 214 The assumptions required to generate Equation (19) are mild. How-
ever, in order for traders to implement adaptive learning, they must observe
their fitness and the behavior of others. How individuals might have access
to this information in a financial market setting is discussed below.

First, itis crucial for learning that behavior revisions be related to fitness.
For example, if the probability of revising one’s strategy does not relate to
fitness[i.e.p(f") = 0in Equation (19)], then the population never changes
(d¢"/dt = 0). Therefore, to justify the assumption of a monotone selection
dynamic, it is important traders have some information about their fitness.
In our model, each period, wealth (dividend) is realized and consumed. This
produces arealized utility according to Equation (2). Since itis not necessary
that a trader updates her strategy each period (in the above exantple,
be strictly less than 1), she will have several realizations of utility. This
provides a noisy measure of one’s own absolute fitness. This is sufficient to
implement the example embodied in Equation (£8).

While having an indication of one’s own fitness is crucial, the example of
a monotone selection dynamic presented in Equation (19) does not require
the traders to know other traders’ fitness. The crucial assumption is that the

14 As an aside, note that if the functignis linear, Equation (19) produces the commonly used replicator
dynamics introduced by Taylor and Jonker (1978).

15 The normalization by the fitness of the informed trader (see Lemma 3) simplifies the calculations in the
article. However, it is straightforward to construct an example of Equation (19) using the absolute fitness
measure of Equation (11).
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functionp (f™) is monotonic decreasing. The assumption that lower fitness
leads to a higher probability of strategy revision does not require traders to
know the fitness of other individuals. However, to calibrate the fungsion
one must have some feel for the likely range for fithess. However, this is
less demanding than knowing the specific fitness of a specific ttader.

A concern with using realizations of the economy as an estimator of
fitness is that the observations about fithess are not drawn from a stationary
environment due to the learning of other traders. By defining fithess based
on expected utility, our model is closely related to Bray’s (1982) model of
intermittent OLS learning. In her model, she assumes traders observe along
series from the economy before anyone updates. The consistency properties
of OLS estimation simplify the analysis by eliminating estimation error (see
note 10). The difficulty with using a small sample of realizations to infer
fitness is that estimation errors across traders will be correlated. In partic-
ular, the dividend realization will influence the learning dynamic, making
the analysis much more complicated. In dynamic models, the link between
economic shocks and learning is interesting. For example, in dynamic set-
tings, Bayesian learning can induce ARCH patterns in returns [see Veronesi
(1999)]. Formally, in the context of this example, one can ensure that traders
have a sufficiently precise estimate of their fitness by choosing a low fre-
guency of strategy revision [small values foff )].

The second requirement to implementing adaptive learning is that traders
have some observation about the behavior of other traders. In the example
presented, traders do not need to observe the fithess of another trader. How-
ever, they do need to observe the strategy of a trader selected at random.
Alternatively, one can assume that traders observe the strategies of more
successful traders. In some financial market settings, such as with floor
traders, it is feasible that traders can observe some noisy signal of other’s
behavior. Presumably this is part of the reason why a floor trader’s training
often involves assisting a more senior trader and gaining hands-on expe-
rience with limited exposure. In other financial market contexts, such as
proprietary trading, other traders’ behavior is not directly observable. Imi-
tative learning in this context may involve cross-firm hiring or acquisitions.

16 |f one wanted to construct another example of a monotone selection dynamic where traders compared their
fitness to the fitness of the population (e.g., average fitness), traders could construct a noisy measure of
population fitness using information about consumption (terminal wealth) in the economy. For example,
one can estimate average fitness by observing average terminal wealth in the economy in a period. Of
course, since utility/fitness is concave, a better estimate of average fithess could be constructed from
observing more information about the wealth distribution (quartiles, deciles, etc.). Using information
about aggregate consumption to evaluate oneself and make decisions appears in the class of preferences
referred to as “catching up with the Joneses” [Abel (1990)]. In other contexts such as mutual funds, there is
explicit publicly available information on relative performance that one could use to implement adaptive
learning.

17 For example, ifrl = ¢™e™, then a sufficient condition to generate a monotone selection dynamic is that
eM > " iff. ™ > f". Inthe example in Equation (19T = 1 for allm.
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Finally, some imitative learning can occur through publication and discus-
sion of strategies in various trade and popular mé&iia.

. Adaptive Learning and Experimentation

Propositions 1 and 2 follow from the monotonicity of imitative learning.
The exact specification of how traders perform the learning by imitation
is not important. However, the previous example depends heavily on the
assumption that updating and copying is independent enough to eliminate
randomness. Since this assumption is perhaps unrealistic, it is necessary
to consider the robustness of the results to learning processes that have a
small amount of noise. Understanding the role of random experimentation
is necessary if we wish to use adaptive learning to understand experimen-
tal asset market studies like Sunder (1992), which has a small number of
traders. More generally, understanding the robustness of rational expecta-
tions equilibria to small amounts of behavior randomness is an important
aspect of the current debate about behavioral finance. This section extends
the previous results to capture the effect of noise from experimentation or
noise in the imitation process.

Ideally one would capture the stochastic elements of learning directly.
Unfortunately the Markov process generated by a stochastic adaptive learn-
ing algorithm is typically too large for direct analysis. Several articles ap-
proach this type of model by simulating learning using a genetic algorithm or
other random search algorithms [e.g., Routledge (1995) or LeBaron, Arthur
and Palmer (1998)]. While these simulations offer insight, it can be difficult
to determine which of the many simulation parameters are crucial. In our
model, we are able to use techniques developed in Binmore and Samuelson
(1999) to capture the important characteristics of noisy adaptive learning in
a deterministic differential equation. Instead of focusing on the learning of
individual traders, we can characterize the behavior of the proportion of in-
formed traders)t, and the average inference parameters of the uninformed
traders{;. As noted previously, these parameters are sufficient to calculate
the equilibrium asset price, the correct inference parameters, and fitness.

Binmore and Samuelson (1999) constructa modelto characterize the evo-
lution of the average behavior using a deterministic differential equation.

In their analysis, the noise from experimentation is replaced by determin-

For example, Lappen (1998) describes the strategies of money managers (in this case, all are well-known
academics) and offers an example of how strategies can be (partially) observed. Such articles raise two
interesting questions not addressed in our model. First, in our model there is no difference in the skill
of traders. In practice, traders can imitate the strategies discussed in Lappen with different degrees of
success. Second, there is some strategic component to disclosing strategies in this manner in that such
exposure increases the flow into the funds discussed.

See Binmore and Samuelson (1999) or Samuelson (1997) for additional details. Similar techniques are
also used in Gale, Binmore, and Samuelson (1995), Sethi and Somanathan (1996), Somanathan (1997).
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istic drift. The authors establish that equilibria of the deterministic process
are arbitrarily close to the expected state of the stochastic process for some
long but finite time period for small levels of noise and drift. To understand
the average behavior of a learning process with a small degree of experi-
mentation, the exact form of the noise does not matter. Hence the effects
of random noise can be captured by the deterministic drift. Unfortunately
their result does not necessarily apply for arbitrarily long time periods. If
the deterministic system (with drift) has multiple stationary points, shocks
(often called mutations) in the stochastic process, however improbable, can
move the system between the multiple basins of attraction present in the
deterministic system. In such a case, it is the relative likelihood of shocks
that determines the expected limiting behavior of the stochastic process
and the exact specification of the stochastic process matters and determin-
istic drift is a less useful tool. However, if the deterministic system has a
unique stable equilibrium, then the specification of shocks is not important
since, on average, the system will remain in the neighborhood of the stable
deterministic equilibrium. In the GS model presented here, deterministic
learning processes are constructed which have unique stable equilibria.

In this section | focus on the evolution of the proportion of informed
traders )¢, and the average inference paramet@rd\ote that the average
inference parameter is a continuous variable and the assumption regarding
the discrete grid of individual demand parameters is no longer binding.
We continue to usd ' (A, £;) = 1 as the fitness of the informed trader.
Let fY (1, &) be the fitness of an uninformed trader using the average
inference parameters [calculated in Equation (12) whére= ¢;]. The
important parameters of the economy are dendgee: (2, 1*). In the
analysis we will hold all parameters of the economy constant except the
level of noise in the risky asset?2 and the cost of informatiorg, implied
by the GS equilibrium proportion of informed tradeks,

Consider the adaptive learning process,for the GS model defined
by the following set of deterministic differential equations for the state
variables(\t, £4).

dia

T O (A, €) + My (A, £o) (20
de
d_tt = Qe(At, €) + neme (A, £r) (2

whereg;,, m;: [0, 1] x R?> - R, g,, m;: [0, 1] x R?> — R?, andy, and

n are positive constants. Thgefunctions describe the imitative portion of
the learning process. Tha functions are drift and represent the effects
of experimentation. Thg are small positive constants that determine the
amount of drift. We make the following assumptions abgufThey are
discussed below.
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0. Continuity
The functionsg;, g¢, m,, andm;, are Lipshitz continuous.
1. Monotonicity

(@) Forr e (0,1),g,(A, £) < (<)0« Y, 0) > (>)1.
(b) For a fixedxr S (0, 1), the solution tad¢/dt = g, (%, £) implies
lIMisoo b = £5(1).
2. Regularity
(@) lim—o0. (2, £) > 0and lim_19.(x, £) < 0.
(b) lim;~11ge(x, O] = 0.
3. Drift
(&) Forallg, lim;om; (1, ¢) > 0andlim_1m; (1, ¢) <O.

(b) For alli, the solution tal¢/dt = mg(x, £) implies lim_ o ¢ =
£m, such that, # (1) for any .

The assumptions on thg functions are consistent with the more prim-
itive behavioral assumption in the monotonic selection dynamic used in
the previous section. The monotonicity assumptions are natural analogs
to Propositions 1 and 2. The regularity assumption [Assumption 2(a)] is
similar to the simplex restriction of the monotonic selection dynamic and
implies; remains in the interval [0,1]. Assumption 2(b) is consistent with
the bounded growth rates assumed in the previous section. It implies that
the convergence to the rational expectations inference parameters slows
when there are fewer uninformed traders (i.e) as 1). Assumption 3 is
discussed below in Section 3.2.

3.1 Imitation Only

In the case where; = n, = 0, the stable dynamic equilibria reflect the
two types of behavior. The first is the GS equilibriu¢a?, E**(A*)). The
second type is where = 1 and inference errors remain large.

Proposition 3. Given aneconomy, E, wittf > 0, the stable dynamic equi-
libria for the learning process in Equations (20) and (21) wijth=n, = 0
are the GS equilibriumi(1*, £**(1*))} and where all traders are informed
(A = 1) such that{(1, £) ¢ G(E)}, where GE) = {(A, )| fY (1, £) > 1}.

Figure 1 characterizes this result. The proportion of informed traders,

is represented on the horizontal axis and one dimension of the uninformed
traders’ inference errot,— I (A, £), is represented on the vertical axis. The
setG(E) is shown and, by Assumption 1(a), represents the region where
di/dt < 0. Theimportant properties &f( E) are thatitis nonempty, closed,
and contains only points > A* (see Lemma A2 in the appendix). When

A > A*, traders can make small inference errors and still have a higher fithess
than the informed traders. The lifé identifies the set where inference

1182



Adaptive Learning in Financial Markets

0-0"(2) Yr> V

G
. -
H
- 2
b (N
0 a* A 1.0

Figure 1

Learning process with no drift

The arrows are for a typical learning dynamic with = n, = 0. The equilibria are at the GS values
(A*,0)orata = 1.

errors are zero and, by Assumption 1@j/dt = 0. The arrows represent
directions of movement for a learning dynamic. Figure 2 represents phase
trajectories for specifig, andg,.?? Each line on the diagram represents an
adaptive learning trajectory in the economy for a different initiahd¢. The

two types of stable dynamic equilibria are where the phase lines converge
(the GS equilibrium) or reach the bounddgy= 1) outside the seG.

As in Proposition 2, an asymptotically stable dynamic equilibria occurs
at theG Srational expectations equilibrium. However, unlike in the previous
section, we can identify stable equilibria where all traders are infoximesd
1) and inference errors are large enough such that an uninformed trader has
lower utility than the informed trader. Once (almost) all traders are informed,
inference parameters are (almost) not updated. This is due to the fact that
inference parameter learning slows as the proportion of uninformed traders
decreases [Assumption 2(b)]. The reduced form equations of Equations (20)
and (21) are consistent with the monotonic selection dynamic considered
in the previous section, since the= 1 stable points are not asymptotically
stable. One can perturb the system away from these stable points and
will converge back to. = 1. However, the inference parameters will move
closer to the rational expectations parameters. Although these points do not

20 These functions are the replicator dynamics for the evolutionafd a “best response” dynamic for the
updating of inference parameters. These functions are chosen only to illustrate the more general points
of this section. The inference parameter space (to avoid higher dimensional diagrams) is for the intercept
parameter,. In these simulations, inference errors on the slope parametare held at zero.
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Figure 2

Phase plots in learning process without drift

Each line represents a different initial condition. Note that all lines converge to GS equilibrium@.5)
or ther = 1 boundary.

persist in the monotonic selection of Proposition 2, they play an important
role when we consider noise proxied by drift.

3.2 Adaptation and Drift

In our model, experimentation has two important effects. First, it will ensure
that some traders are always experimenting with being uninformed. It pushes
the system away from the= 1 stationary point. However, experimentation
also makes it more difficult for the uninformed trader to learn the correct
inference parameters since each variation in behavior alter&*the?).
Proposition 3 shows that purely imitative learning leads the economy either
to the GS equilibrium or to the situation where everyone is informed. Which
one of these outcomes is more robust to experimentation, and hence more
likely, depends on the relative depths of the basins of attraction. Using the
Binmore and Samuelson (1999) approach, this salient feature of random
experimentation can be captured with deterministic drift. Locally, pushing
the system away from the GS equilibrium or from the everyone-informed
stationary points with deterministic drift has the same effect as stochastic
experimentation.

The key features of experimentation are captured in the drift functions,
m. Assumption 3(a) keeps away from the boundaries [the inequality in
Assumption 3(a) is strict]. Assumption 3(b) pulls the inference parameters
toward some arbitrary and incorrect value. Theandn, parameters scale
the drift and ensure that both of these effects are small. Small drift means
that the direction and stationary points of Equations (20) and (21) are similar
to direction and zero points @f, andg, everywhere except near= 1. To
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help describe this, defin@’(E) as the points wherg; is decreasing and
h(x; E) as the zero points of Equation (21) for a givef! That is,

G ={(x 0 16RO +nm@, 0 <0} (22)

h(v) ={€ | ge(r, €) + neme(r, £) = 0} (23

The following lemma shows that we can specify alearning process with drift
using three parameters?, A, and{,. We can choose a learning process
LA, A, £y) with drift levelsn; > 0 andn, > 0 such that for alih. <

A", G'(E) is within A of G(E) andh(x; E) is within A of é**(A). The final

part of the lemma establishes that drift matters most when most traders are
informed (as\; — 1).

Lemma 5. GivenA > 0andL” < 1, there existg; > 0 such that for all
M. <nandn, <n

(@) forall (W', ¢) € G'[(A, £) € G]with A/ < 1", there existgA, £) € G
[or (A, ¢') € G’] such that||(x, £) — (A, £)] < A,

(b) forall» < A", |h(r) — &**(1)| < A, and

(c) there exists aBd such that < & implies(1 — ¢, £) € G’ for all £ and
Ih(1—¢) —emll < A.

Dynamic equilibria for a learning process8, occur wheren(i) intersect
the boundary of5’. The following proposition establishes that at least one
stable dynamic equilibrium exists.

Proposition 4. For a given economy E, there exists at least one stable dy-
namic equilibrium to the learning procesg(A”, A, ¢m).

The static GS rational expectations equilibriumis not a dynamic equilibrium
of an adaptive learning procegs\”, A, £, due to the small amount of
drift. However, itis possible that all stable dynamic equilibria of the adaptive
learning process lie very close to static GS equilibrium. In such a case the
static GS rational expectations model and the adaptive learning model with
drift make almost identical predictions about the behavior of an economy.
The following proposition shows, for a given economy, one can always find
learning processes such that the dynamic equilibria lie arbitrarily close to
the static GS equilibria.

Proposition 5. Given A > 0 and economy E= (aez, A¥), there exist
A7, A", andZy, such that for all.” > A7, A" < A" and ||¢;,, — é**(1)|| <
||€§1’1—€**(1) |, allthe dynamic equilibria of the learning procesé\’, A, £;,)
are within distanceA of the GS equilibriungr*, £+ (1*)).

2! Note that from Assumption 1(b) and the implicit function theoréri,; E) is a function (and not just a
correspondence).
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Figure 3
Learning process with drift

The unique dynamic equilibrium is near the GS val(es 0) (denoted by the dot).

This proposition is illustrated in Figures 3 andhA) (denotedH’ in the
figure) andG’ cross only once and this crossing occurs near to the GS
equilibrium. All trajectories in Figure 4, including those which begin with

A =1, converge to a point just below the GS equilibrium.
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Phase plots in learning process with drift

Each line represents a different initial condition. Note that all lines converge to a point which is close to

the GS equilibrium.
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Figure 5
Learning process with drift
The unique dynamic equilibrium (denoted with the dot) is far from the GS values.

Proposition 5 demonstrates that for a given economy, a learning process
with arbitrarily small drift converges near to the GS equilibrium. However,
the converse does not hold. For a given learning process, economies exist
such that the learning process does not converge near to the GS equilibrium.
Figures 5 and 6 describe an example where the unique dynamic equilibrium
ofthe learning processis ngae 1, away from the GS rational expectations
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Figure 6
Phase plots in learning process with drift
Each line represents a different initial condition. Note that all lines converge to a point clbse 1o
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equilibrium. In this case, all trajectories, including those initiating at the GS
equilibrium, converge to this point.

The key for the example in Figure 5 is that the drift in the inference
parameters is large relative to the size of the&@). If uninformed traders
make no inference errofg = é**(k)), wheni > A* it is more economical
to infer the signal from the asset price than to be informed and bear the
cost of information. This is the case as long as inference errors are small.
As the level of noise in the risky asset supply decreases, holding the GS
equilibriuma* constant, the size of the 8{E) shrinks as does the tolerable
inference error. Proposition 6 demonstrates that for a fixed learning process,
even one with a small amount of drift, there exist economies such that all
dynamic equilibria of the learning process are far from the static GS rational
expectations equilibrium.

Proposition 6. For a given learning process§(1”, A, £y) with0 < A* <
A" < 1 such that

{[he) — =@}
> fuﬁ{”(k’@ — O 10 eG 0, )e G} (24)

inf
A<M\’

there existe2” such that for all economies E (o2, £*) with 6Z < o2/,
all the dynamic equilibria2’, ¢") haver’ > 1”.

The proof demonstrates that the set G(E) shrinks to a line (permitting no
inference errors) as the asset supply noise vanishes. The dynamic equilibria
of the learning process occurs whi) intersects the boundary &,

notG. The sufficient condition in Equation (24) ensures that the amount of
drift in the inference parameters is roughly the same size as the drift in the
information choice so thab’(E) shrinks enough as asset supply variance
shrinks.

Propositions 5 and 6 demonstrate that for adaptive learning to produce
behavior similar to that observed in the static GS rational expectations
equilibrium, it is necessary for drift (a proxy for experimentation) to be
small relative to the amount variance in the risky asset supply. This provides
an important link between the structure of learning and the structure of the
economy. The intuition for this result can be demonstrated by tracing a
trajectory of the adaptive learning process beginning at the GS equilibrium.
At the GS equilibrium, informed and uninformed traders have identical
fithess and uninformed traders make no inference errors. Drift, representing
the underlying experimentation process, induces inference errors and thus
lower fitness for the uninformed. Adaptive learning causes the proportion
of informed traders to increase. If the asset supply variangés high, the
increased has a significantimpact on the informativeness of price about the
signal (i.e..V[y | P, X, £] decreases substantially). Therefore, uninformed
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traders’ fithess improves enough to offset inference errors. As uninformed
traders learn more about the correct inference parameters and their fithess
increases, the proportion of uninformed traders decreases. In this case, the
adaptive learning process remains close to the GS equilibrium. In contrast, if
asset supply noise is low, then the initial increaselias only a small effect

on the informativeness of price and uninformed fitness remains below that of
the informed traders and most traders become informed. Once most traders
are informed, the learning rate of the few remaining uninformed traders
slows (since there are fewer uninformed people to copy) and drift in the
inference parameters has a larger eff@ct A” in Lemma 5c). In this case,

the dynamic equilibrium remains well away from the GS equilibrifm.

4. Conclusions

Adaptive learning is a relatively unsophisticated behavior of imitating suc-
cessful behavior, abandoning unsuccessful behavior, and occasional exper-
imentation. In other fields of research, genetic algorithms and genetic pro-
gramming, both examples of adaptive learning, have proven very successful
in solving complex optimization probleni8 Whether or not adaptive learn-

ing is a useful description of economic behavior is an open question. In this
article I have shown that the details of imitative learning are less important.
In particular, imitative learning that can be represented with a monotone
selection dynamic will converge on rational expectations demands and has
a unique asymptotically stable point at the GS equilibrium. However, the
result is less robust to including the effects of experimentation. This is un-
fortunate because this implies that the important parameters of learning may
be difficult to observe.

Whether or not the limiting behavior of the adaptive learning process is
similar to that in the GS rational expectations equilibrium depends on the
level of noise in the asset supply in the economy and the size of experimenta-
tion (captured by drift) in the learning process. There are two interpretations
for the uncertainty in the asset supply. One view is that this noise is caused
by irrational traders trading with biased views or based on irrelevant data.
In our model, this view of supply noise is not justified since we have tried
to incorporate “irrational” behavior in a learning process that is adaptive
and not Bayesian. An alternative view of asset supply noise is that it is a
reduced form for trades which arise endogenously in a more complex, but

22 There can be multiple stationary points for the learning dynamic. In gerrgialwill intersect theG’
boundary ofy > 1times, where is odd andq+1)/2 are the stable dynamic equilibria. In these cases, the
Binmore—Samuelson techniques are less able to capture the effects of stochastic noise with deterministic
drift.

23 See Holland (1975) or Goldberg (1989) for details on genetic algorithms and Koza (1992) for genetic pro-
gramming. Sargent (1993) provides an overview of genetic algorithms as models of learning in economic
settings.
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rational, economic modéf Since the asset supply noise parameter turns
out to be crucial, the details of more complex models underlying supply
noise are important to empirically test our adaptive learning model.

The adaptive learning model in the GS framework is well suited to lab-
oratory experiments. Experimental asset markets have proven a useful tool
for investigating rational expectations equilibffzBy controlling the infor-
mation subjects observe about the behavior and success of others as well as
the economic parameter of asset supply noise, insight can be gained into the
appropriateness of modeling economies using adaptive learning and perhaps
allow one to calibrate the learning process. This article focuses primarily
on the limiting behavior of adaptive learning processes. However, we are
able to identify some properties of the dynamic path. In particular we have
shown that the proportion of informed traders will approach its equilibrium
level from above. If one is willing to make additional assumptions about the
learning process, more properties of the dynamic path can be developed.

| have focused on the situation where all traders follow the same learning
algorithm. One interesting conjecture suggested by the model is that indi-
viduals who learn faster are more likely to be uninformed. This runs counter
to the common view that sophisticated investors process more information.
In a model of adaptive learning, more sophisticated traders are better able to
make inferences from prices and therefore spend less resources on acquiring
information. In order to fully investigate such a conjecture, a more detailed
model of how individual adaptive learning algorithms differ is required. This
article is a first step to exploring such questions by characterizing adaptive
learning in a well-known rational expectations model.

Appendix

Proof of Lemma 1.There is a continumn of traders but only a finite number of types.
Aggregate their demands in Equations (3) and (4) according to the proportignand
equate with the aggregate supply.

M G=PO)+ ) g (U + P - P)) = (A

nelLY

Since the equation is linear, the market clearing price depends onlyamnl the average
inference parameterg, = ({y, £1;) defined in Equation (5), and not the complete
vector. Solving forP, gives Equation (6). u

Proof of Lemma 2. This formulation follows Bray (1982). By inspection of Equation (6),
(%, £) is a sufficient statistic fap. Joint normality of the random variables and the linear

24 Black (1986) or De Long et al. (1990) view noise arising from irrational traders. Jackson (1991), Wang
(1993), Bernardo and Judd (1995), and Paul (1995) take the opposing view.

25 See Sunder (1995) for a survey of experimental asset markets.
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price relation in Equation (6) imply that, conditional onP, A, and¢, is normal with
E[y | P, A, ¢JandV[y | P, A, £] as follows [see Morrison (1990)]:

(o2
Elyl + — (P — E[P])
Op
AML=2)y'yYo?
= ———= b
()Ly') o)?—l—oez
A+ @ =0yVA—-2)) ay'e?
(r ’ 0) 4 Y p. (A2)
(Ay') of—l—aez

E[y| P, A, {]

Equation (7) follows using the definitions in Equation (8) and simplifying the slope and
intercept expressions. The conditional variance is

2 2 2
Opy 0,0,
VIy | P,A,E]:oyz—( 2) = P ) (A.3)
Op (Xy') 02+ o2

Preliminary to Lemma 3
Fitness is calculated by taking expectations iteratively. For informed tradérs: 1),
fithess is

F'=E[E[E[-exp—aW)) | y. P.¢] | P.¢] I ¢]. (A.4)

To calculate fitness of the uninformed traders conditional on the populaticonsider
an agent with asset demands as in Equation (4) with arbitrary parameterslg, £7)
(not necessarily on the finite gric ) and any arbitrary (positive) constaplt,

F("yY) = E[E[-exp—aW)) | P.¢] o] . (A.5)

Since the asset demands in Equation (4) are linear, we can calculate fitness for any
constantyV as long as thé" parameters are appropriately adjusted for gadfrom
Equation (4), note that for alP,

x"=yY (g + P —P)=7Y (L + &P -P), (A.6)
as long as for alh,

u U U_ sU
n :egl’;u - Vyiu” (A7)

Y
Py

=

Since the demands are identical, there is no change in the economy from the normaliza-
tion by a differentyV . In particular,

F" yY) = F@", 7). (A.8)
Therefore | will calculate fitness for a conveniently choséh and then use Equa-

tions (A.7) and (A.8) to calculate fitness for the parametersinand the givenyV.
Definey*(A) using the conditional variance relation in Equation (10):

y*0) = (acvarly | P, ¢l +02) . (A.9)
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Note that this expression dependsothrough the conditional variance gf This is
allowable since. is part of the conditioning information i. Initially we calculate the
fitnesses conditional on observing price. These are derfoted) andFY (¢", y*; P)
for the informed and uninformed traders.

Lemma A.1. Given a population stateé, the fitnesses conditional on P are as follows:

1
"(P) = "722 TRV
F (P)_EXp(aC)<azz+V[y| P]) F * y* | P) (A.10)
¢"(P)?

U yn *, —
Py = exp(z(o§+V[y | P])

) FUr, y* | P), (A.11)

wheres"(P) = (£§ — £3) + (¢] — £;) P [and ¢* are defined in Equation (7)].

Proof of Lemma A.1The proof of the proposition proceeds by calculating three quan-
tities: FY (¢", y*; P), FY(¢*, y*; P), and F' (P). All expectations and variances are
conditioning ongp.

(i) FUn vy P)
The risky asset demands of an uninformed trader from Equation (4) and the parameters
" andy* are

<
|

"=y (g + P —P)
_ ElyIPI-P+¢"(P)
- a(@?+VIylP]

(A.12)

E[y | PlandV[y | P] are calculated in Lemma 2 agd(P) is defined above. End-of-
period wealth for the uninformed trader is

E[y|P]-P+¢"(P)
a2+ V[y | P

WD =W = ( > (y+2z-P). (A.13)

End-of-period wealth, conditional oA and¢, is normally distributed with conditional
mean and variance of

(E[y | P1 =P+ ¢"(P)(E[y | P] - P)
a(eZ+V[y|PD

n __(E[y| Pl =P +¢"(P))?

v[wiip]= a(e2+ VIy | P]) (A.15)

E[W | P] =W+ (A.14)

These conditional moments determine the fithess (using the CARA preferences and
normality).

FU", y*; P) = E[—exp(—aW]) | P]

—exp(—a<E [wi | P] - %V [wr i PD)
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= —exp(—awp) exp( (Ely | PI - P)* >

2(c72+ VIy | PD
¢"(P)?

(i) FUer, vy P)
When¢" = ¢* [defined in Equation (7)};"(P) = 0 for all P. Therefore

FU(e*, y*: P) = _exp(_avvg) exp(—%) (A.17)
and
FUe, y* P) = exp(%) FU*, y*; P) (A.18)
@iy F'(P)

Following similar steps which lead to Equation (A.16), the informed trader’s fithess
conditional on{y, P, ¢} is

E[-exp(-aWf) | y. P. ¢]
——exp(-a(E Wy Iy.P.]- 3V W |y, P]))

P2
= —exp(—aWy) expa c) exp (— - P) ) ) (A.19)

2
20

Taking expectations overgiven P (and¢) yieldsF' (P):

2 2
| _ _ JZ
F'(P) = —exp(—aW) exp@c) (7%24_\/[)/' P])

(Ely| P, L] — P)?
XeXp(‘ 202+ VIy | P]) )

2

Gz % U /px *,
eXp(a C) <m) F (E Y s P) (A20)

This completes the proof of Lemma A.1. n

Proof of Lemma 3 The proof calculates the expectation oveof the expressions in
Lemma A.1. First, by inspection of Equations (A.16) and (A.20), initial wealty,

will have no impact on the relative utilities. Therefore, without loss of generality, set
W, = 0. DefineX = ¢ + (¢; — 1)P ~ normalux, 03), and

00— gx 0 — ex 1
A=¢0—-¢—-(2—1)¢, B=2 L C=—— |
o (f’{—l ° -1 o2+ V[y| P.¢]

D

expa c) (ngz)% . (A.21)
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A, B, C, andD do not depend oi?. Write Equation (A.16) as
U yn * C 2 2
FU. ' P) = —exp(—5 (X~ (A+ BX))) (A.22)
and Equation (A.20) as
| C 2
F (P):—Dexp(—zx ) (A.23)

Xisalinear function oP and therefore normally distributed. SineendX are perfectly
correlated,FY (¢", y*; P) = FY(¢", y*; X) and F'(P) = F'(X). Calculating the
expectation ovek, yields

E [— exp(—% (X2—(A+ BX)Z))]
—(1+Cof1- BZ))%

—A? 2 _ B2u2 — CA02—2AB
xexp(—g( Rl Sl x “)) (A.24)

2 1+ Co2(1— B?)

In calculating this expression, one can verify that the expectation is finite only-if 1
C(1— B?) > 0. Equation (A.24) i€[FY (¢", y*; X)]. Multiplying Equation (A.24) by
D and settingA = B = 0 yieldsE[F' (X)]. NormalizingF' = 1 and accounting for
the fact that CARA utilities are negative gives
|
U,y = _ EIF T
E[fUn, y* | X)]

1

a2 LN
exp(ac) <m) EWL", 1,0 (A.25)

1
1+cc>2<(1—32> 2
1+Co>2<
EW", 1, 0) = C[A(1+Co2)+Bux]?
T . __ CA@HCo+BuxI” ) 2(1_ g2
ex ( 2(1+Ca>2<)(1+Ca>2<(1—Bz))) if14+Coyg(1—-B% >0

0 otherwise

(A.26)

If E[FY(e", y*; X)] is not finite, thenfY (¢", y*) = 0. To complete the proof we use
the relationship in Equations (A.7) and (A.8) to calculate”, 1, £) = (", A, £) for
£, € LY and the desired constapt to getf"(x, £).

Proof of Lemma 4Linear asset demands of the other traders imply the linear market
clearing price relation in Equation (6). Therefore, conditional on obseiRiagd know-

ing the population stat¢, end-of-period wealthV" is normally distributed. Therefore
the asset demanas$(P), which maximize the innermost expectation in Equation (A.5),
are

Ely| P.¢] -

*(P) =
P = VY I P. el + o)

(A.27)
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whereE[y | P, ¢] andV[y | P, ¢] are linear inP (see Lemma 2). Finally,

argmax(E [—exp(—aW) | P, ¢]) = argrpnax(E [—exp(—aW) | ¢]). (A28
x(P)

x(P)

Therefore the fitness maximizing demand parameters are chosen to give Equation (A.27).
Use ¢* from Equation (7) and/* from Equation (A.9) and the adjustment in Equa-
tion (A.7). n

Proof of Proposition 1.DefineS = {¢ € SNt | ¢° = A} for a fixedA. We need to
show for anypg € interior(S), if k(») < 1, then given am > 0, there exists al’ and

T such that for allN > N’ (sufficiently fine grid) and > T (long enough horizon),
¢ < ¢ for all n such that|¢" — 2**(A)|| > ¢. To begin, define the following sequence
of sets:

L = {"eLY|3peSst|e"— (@) <e}
Lisa = {€"e LY |3¢ € S withg™ =0
forall ¢™ ¢ Lj s.t.|le" — 2*(p)|| < e} (A.29)

Sincel** (1) € C(LY), there exists a sufficiently fine grid (large enough> N’) such
that|l€" — (1) < e for somet" e LY . We can write Equation (13) as

(h, 0) = (1 + R(x)) () — ke, (A.30)

where? = £¢"¢" andk < 1. Using this, it is easy to verify the following:

1. (%) € C(L)) forall j.

2. Lj+1 - Lj for all j

3. There exists a finitd sych that;,; = Lj.
4. ¢" e Lyimplies||e" — )| < e.

To complete the proof we need to show that for any monotone selection dyigimie,0
forall ¢" ¢ L ;. We use the arguments of Samuelson and Zhang (1992M lbet the set

of demand parameters that are notihbut do not vanish under a monotone selection
dynamic; that isM = {£" | lim_, ¢ > 0 and¢" ¢ L;}. We assumeéM # & and
derive a contradiction. Consider the smallgstuch that there exis&" € M such that
{Melj_yandet™ ¢ L;. Lete™ = argmin{||£™ —£"|| | £" € L;}. Forallp € Ssuch that
¢" =0foralle" ¢ Lj U {e™}, T™(¢) > fM(¢). By construction, lim, . ¢ = 0 for
all¢" ¢ L; U {€™}). Therefore there existsasuch thatforalt > T, f™(¢) > f™(¢)
and by the monotone selection dynamic thereds-a0 such that

drem y " "

at [W] = (gm(¢t) -g" (¢t)) o < _SW' (A.31)
This implies thatlim_...¢" = 0, which is a contradiction of the assumption that
£™ € M. ThereforeM = @ and¢ — O forall£" ¢ L. u

Proof of Proposition 2.
(i) ¢* is asymptotically stable for any monotone selection dynamic:
Without loss of generality, reorder the det so thatgp* = (A*,1— A*,0,...,0); and
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let £™ = £**()1*). By construction of the GS equilibriunf,' (¢*) = f™(¢*) > f"(¢*)
for n # n*. Monotonicty of the selection dynamic impligs = g™ and by the simplex
restrictiong' = g™ = 0. Thus¢* is a stationary point of Equation (15). To show
that it is also asymptotically stable, consider the neighborhoatt afefined byS* =
(A +8,1—1"—8—¢6,8%...,eV)|e">0,6 =3e", —A <8 < A, andA > 0}.
Since f"(¢) is continuous for alp € S* (for f"(¢) > 1), f™(¢) > f"(¢), and by
monotonicityg™(¢) > g"(¢). (Note that this does not requil?e< 1). Therefore, if
¢ € S for all t, theng — 0. We now need to show that the monotonic selection
dynamic impliest; € (A* — A, A* 4+ A). Sincef™ maximizes fitness (Lemma 4), we
can apply the envelope theorem to calculate thidt (¢*)/dx > 0 [using the fact that
dV[y | P,¢]/dx < O from see (10)]. Therefore, for any?, ..., V), there exists a
X € (W*— A, x*+ A) such that fo, € S, ' (¢) > f™(¢) ifand only ifA; < A, and
thereforeg' (¢) — g™ (¢) > Oifand only ifi, < X and therefore, € (A* — A, A* + A).
Finally, sincet™ maximizes fitness andl' (¢) = f™(¢) only atg = ¢* (i.e.,r = 1*),

if " = 0, thenk = A* and ife" > 0, thenk > A*. Thereforep* is asymptotically stable
andx; will converge tor* from above.

(ii) Uniquenessip # ¢* is not asymptotically stable:

By constructiong* is the only point where. € (0,1) and f'(¢) = f"(¢) for all n
such thaip" > 0. Therefore all other stationary points of Equation (15) have 1
or » = 0. It is straightforward to show that each of these is not stable. Consider the
case¢’, wherer’ = 1. Sincel**(A) € C(LY) for all A, as long as the grid of possible
demand parameters is sufficiently fine (large enoNyithere exists af" close tod**(1)
such thatf"(¢") > f'(¢’). By the continuity off, there exists a neighborhood ¢f,
denotedS, such that for alp € S f"(¢) > f'(¢), which by monotonicity implies
thatg"(¢) > g'(¢). If ¢’ were stable, thep, € S for all t. Butin ¢ € S implies
g"(¢) > g¢'(¢) andxr; — 0, which contradict®’ being stable. An identical argument
rules out stationary points with= 0. u

Preliminary to Proposition 3
Lemma A.2.For a given economy, E, Wheree? > 0, the set GE) = {(A,0) |
fY(x, £) > 1} has the following properties:

(@) G(E) is closed.

(b) G(E) is not empty. .

(c) Fori > A*, there is a neighborhood @#, £**(3)) that is in G(E).
(d) The only(x, £) € G(E) with A < A* is (A%, £**(1%)).

Proof of Lemma A.2(a) fY is continuous im. and¢ in a neighborhood offY = 1
and the setfY > 1} is closed G(E) is closed (i.e., inverse image of a closed set for a
continuous function is closed). .

(b) By the definition of the GS equilibriuni®*, £*(1*)) € G(E). ThereforeG(E)
is not empty.

(c) At 27*(2), uninformed agents are making no inference errors (by definition) and
sincer > A*, fY (L, (1)) > 1.SincefY isjointly continuous irk and in the inference
parameters, there existssuch that for al(e;, &,) € R3, YA + &, 870 + &) > 1
for A > A* and|| (e, &) < &. A

(d) By construction of the GS equilibriunt,Y (A*, £*(1*)) = 1. Since inference
errors reduce fitness (Lemma 4) forafvith || ¢ || > 0), Y (1*, (W) +e) < 1. Again,
by construction of the GS equilibrium, far< A*, fY(x, ) < fU(, (1) < 1. ®
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Proof of Proposition 3.(a) First consider possible dynamic equilibria such that
(0, 1). By definition,g, < 0 <> (1, ¢) € G(E). ForA € (0,1), g, = 0if and only if
(, £) isonthe border o6 (denotedG) andg, = 0 < £ = £**(A). From LemmaA.2(c)
and (d), the only intersection of tH#G with 2**(A) is atA*. Therefore, forr € (0, 1),
the unique dynamic equilibrium g%, £**(1*)). To verify that this equilibrium is stable,
note thatg;, > 0 for A < A* (Lemma 5(d)) andy, < 0 in a neighborhood of** (1) for
A > A* (Lemma 5(c)). This, coupled with Assumption 1(b) @n establishes stability.

(b) Next considen. = 1. By the assumptions about the behaviomgpfand g, as
A — 1, all points(1, £) ¢ G are fixed points of the learning dynamic.(If, ) € G
is a fixed point, it is not stable sinag(1 —¢,¢) < 0 (fore > 0). For(1,¢) ¢ G,
0.(1 —&,2) > 0. Thus for small enough andrg = 1 — ¢, lim_ Ay = 1. By
assumption||g, || is small fori close to 1. Thus fo€y = ¢, lim;_ -, ¢; can be made
arbitrarily close to¢. Thus(1, 1) ¢ G is stable. (Note the pointgl, 1) ¢ G are not
asymptotically stable since the equilib(ih ¢) are connected).

(c) Finally considen. = 0. Sinceg, (¢, A) > 0 (for small positives), any possmle
dynamic equilibrium with. = 0 is not stable.

Proof of Lemma5(a) By definition,()’, ¢') € G’ impliesthaig, (A', £)+n,m; (A, ) <

0. If g.(2/,¢) < 0then(x, ¢) € G. On the other hand, i@, (2, ¢) > 0 then 0<

g, ) < —pm;, (A, £). By choosing small enough, g, (', £') is within A" of

g, (%, £) = 0. By the continuity ofy,, (', £") is with distanceA of (4, £). Alternatively,
(&, &) € G implies thatg; (1, £) < 0. If g, (A, £) + num, (1, £) < 0O, then(r, £) € G'.

If not, then 0 < gy (%, &) + My (A, £) < nmy (X, £). Thus for small enough, by
the continuity ofg, andm;, there existg)’, ¢') within distanceA of (1, £) such that
0.\, ) + nmy (A, £) < 0.

(b) DefineM() = sup,{lim.(x, O)|I}. Sincem, is boundedM() < oo. For
any € (0,1, g@(x,é**(/\)) = 0 andg,(x, h(»)) + nem,(x, h(x)) = 0. Therefore
9e(h, €%) — ge(h, G| = lIneme(x, h()) | < neM(A). By choice of, .M (1) can
be made arbitrarily small. By the continuity of, ||h(A) — 2**(A) | < A.

(c)Forx < 1,9,(»,¢) =0ifand only if¢ = 2**(A) andm, (A, ¢) = 0if and only if
¢ = £m. However, by assumptioty, # ¢**(1). Thush(x) # 270 lim, 1 h(L) = £
follows from the assumptions that lijm; g, (A, £) = 0 for all £ andm,(x, £) =0 onIy
atl = 4p,.

Prelude to Proof of Proposition 4

Since the learning dynamic in Equations (20) and (21) is an autonomous (i.e., time
independent) system of equations, we can define an invariant set around a stable dynamic
equilibrium. Forx € R", letdx/dt = g(x) (whereg(x) is Lipshitz continuous) and

L (Xo, t) be the unique continuously differentiable solution, the\t& aninvariant set

if all trajectories which begin itV remain inV. If x* is a stable dynamic equilibrium,

then for every neighborhoo@ of x*, there exists alR ¢ Q such thatv = {L(xo, t) |

Xo € R,t > 0} ¢ QandV is an invariant set (proof omitted).

Proof of Proposition 4.The proof shows the intersection lofi) (whered¢/dt = 0)
and the boundary o', denoteddG’, and whereadi/dt = 0 is nonempty and that at
least one of the intersections is stable.

For smalle > 0, (¢, h(¢)) ¢ G’ and(1— ¢, h(1—¢)) € G'. Therefore, the infemum
of

W, ) = iqf{(k, h(»)) € G’} (A.32
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has 0< A" < 1. Sinceh(}) is continuous(’, h(A")) € 9G’. Therefore()’, ¢') is a
dynamic equilibrium. It remains to be shown that this point is stable.

To show that()', ¢') is stable, consider any arbitrary neighborho@d € R® of
(', £"). The following will construct the neighborhod® c Q' with the property that
all trajectories originating ilR’ must remain inQ’. To begin, without loss of generality,
letQ = (' — A, XM +A) x QwhereA > 0andQ e R? is a neighborhood of . The
construction oRR issuchthaR' = A x RwhereA = (M’ —¢, M +¢e)with0 < ¢ < %A
andR is a neighborhood of with R C Q.

Let the solution tod¢/dt = g,(A, £) + nemy (1, £) for a fixed and constant be
denotedé; = L(x, £o,t). L is continuously differentiable in each of its parameters.
Recall that the unique asymptotically stable fixed point of this system is given by the
continuous functioh(1). Sinceh(1) is continuous, there existsan- 0 suchthah() €
Rforall» € A.Furthermore, since eabti)) is also a stable dynamic equilibrium (when
A is held constant), there exist s&tg)), neighborhoods dfi(1), such that, € U (1)
implies thatL (A, €o,t) € Q for allt > 0. Since eacld (1) is openh(2) is continuous,
andes > 0 can be chosen arbitrarily small, there exists an oped $aneighborhood of
¢ = h(/)] such that for allh € A, h(A) € U and¢y € U implies thatL (%, £o,t) € R
forallt > 0. For examplel) could be the intersection of the appropriately chddén).

For eachh. € A, an invariant seV (1) C R can be constructed as in Lemma A.3,
V(A) = {L(A, £o,t) | £o € U,t > 0}. Consider the intersection between any two of
these set¥ (1) NV (A + ¢). The following will show that this intersection is an invariant
set under both. (A, -, ) andL (A + ¢, -, ).

Considert € V(1) NV (A + ¢). It follows:

(i) Bydefinitiont € V (1) impliesthere exist& € U andt suchthat = L (A, £o, 7).

(iiy Similarly, £ € V(A + ¢) implies there exist€,, € U andt, such thatt =
L+ &, £oe, To).

(iii) SinceV (1) is an invariant setl (A, £o,t) € V(1) forall t > 0.

(iv) Similarly, sinceV (A + ¢) is an invariant setl. (A + ¢, £o.,t) € V(A + ¢) for all
t>0.

(v) Sincel is (continuously) differentiable, the implicit function theorem can be
applied® and there exists(t) suchthat (&, £o, t) = L(A+¢, £o+¢, t). By choice
of smalle, || (t)]| can be made arbitrarily smail.SinceU is openg + ¢(t) € U.
Since this is true for any, L(A, £o,t) € V(A +¢) fort > 0.

(vi) Similarly, there exists a smafl (t) such thatL (A + ¢, €o.,t) = L(A, o + ¢, 1)
and{o, + ¢, € U. ThereforeL (A + ¢, £o.,t) € V(1) forallt > 0.

Taken together, these points imply tHatx, ¢9,t) € V(A) N V(A +¢) andL (A +
&, Lo, 1) € V(O) NV (A + ¢). The intersection of the invariant sets is also invariant. Let
V be the intersection of all the invariant sets. That is,

V= m V() (A.33)

AEA

Since(i)—(vi) are true for the intersection of two arbitrary sets which differ in the pa-
rameter bye, it follows that for allA € A, ¢ € V implies thatL(x, ¢,t) € V for all
t>0.

26 The implicit function theorem applies so long as the determinant Jacobeln|®fL (1, h(A), t)| is
nonzero. This follows from the fact that) is the unique fixed point and that it is asymptotically stable.

27 Note that since thé(1) are asymptotically stable, the détcan be chosen to ensure that trajectories
converge. Therefore lim, [|Z(1)|| ~ [|h(A) —h(x + &)]|, which is small by the continuity di(}).
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We have constructed an invariant 8&fsuch thatv ¢ R c Q) for the inference
parameters. As long as € A, then¢; € V. It remains to be shown th® and A
(i.e., choice ofe) can be chosen to ensure thate A. By construction, the dynamic
equilibrium (', £') is on the boundary of the closed €&t such thatA’ — ¢, ¢') ¢ G’
and()' + ¢, £') is an interior point ofG’. Therefore, for a small enough neighborhood
Rof¢,£ e Rand)' —e < A < A" implies(%, £) ¢ G' anddA/dt > 0. Similarly, for
¢ e Rand)' < A < A +¢eimplies(x, £) € G’ andda/dt < 0.

Therefore, for any neighborhod@ of (A, £), there exists the neighborhoadx U
such that(rg, €o) € A x U implies (A, ;) € A x V and by constructiol x V C
W = A, M+ A) x Q= Q. Therefore(A', £') is a stable dynamic equilibrium of the
learning process. u

Proof of Proposition 5.Consider the learning procesgr”, A", 2;{1) with)” = 1-A" >
A* and ), = (1) — (A", A”).28 For smallA” andx > A", (, h())) is an interior
point of G. Therefore there are no dynamic equilibrium &fwith A > 1" (i.e., no
intersections ofi(A) anddG’). Applying Proposition 2, there exists at least one dynamic
equilibrium withA < A”. Recall that the intersection ¢f*(1) anddG is unique and
is the GS equilibrium (Proposition 3). Since for< A", ||h(A) — )| < A [see
Lemmab5(b)]A” can be chosen small enough to ensure thatigap£) — (A*, 2**(A*))|| |
X, ¢) € 3G Nh()} < e. Lemma 5(a) implies that fok < A” and(V/, ¢') € 3G/,
inf{||(\, €) — (A, Ol | (A, £) € 3G} < A” (i.e., the boundary 06 is close to the
boundary ofG’). Therefore, by the triangle inequality,(if, £) is a dynamic equilibrium
(i.e.,inh(x) N aG’) then| (A, £) — (A%, ()| < A” + ¢ < A for small enough\”.
Therefore all the dynamic equilibriagf(A”, A”, £7) are withinA of the GS equilibrium.
The same is also true of learning processes with less drift, naniely,”, A" < A",
and|l€y, — 2Dl < 1€y — £ (D] u

Prelude to Proof of Proposition 6

The following function measures the size of the inference errors that still leave the
uninformed trader at least as well off as the informed trader. This function characterizes
the size ofG(E). Fori > A*, definex, (G(E)) as follows,

@ (G(E)) = sup{lle — £l | (. €), (. £) € G(E)}. (A.34)
{e.e'}

Lemma A.4. For economies, E= (crez, A¥), with fixedA*, for all A > A%,

lim «, (G(E)) = 0. (A.35)
oez—>0

Proof of Lemma A.4For . € [A*, 1], define the correspondenGg (E) as
GuE)={t| (0 eGE)}={] "G ¢ E) > 1} (A.36)
By Lemma A.2(b),G,(E) is nonempty. SincefY is jointly continuous inc2 andc

(which is implied byr*) and the setfY > 1} is closed, the graph of the correspondence
G, (E) is closed. Therefor&, (E) is upper hemicontinuous.

28 This assumes that for all, £** (1) #* £ (1) — (A", A"). This is without loss of generality since choice
of ¢, can be perturbed slightly if required.
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In the economy where? = 0, that is,E = (0, A*), fY(%, ¢; E) < 1 and equals 1
only at¢ = 27 (1). ThereforeG, (0, A*) is the singletor{@**(A)}. Consider a sequence
E:, with 62(t) > 0 and constant*, such thatg, — (0, 1*). Take any two sequences
¢ — ¢ and{; — ¢ such thatt;, ¢; € G, (E;). SinceG; is upper hemicontinuous,
£, 0 € G,(0,A*). But sinceG; (0, 1*) is a singletont = ¢’ = 2**(A) and || ¢; —
(W) + 1€, — ()| — 0. By the triangle inequality¢;, — £;]| — 0. Since this is
true for any two sequences, (E;) — 0. u

Proof of Proposition 6.1t is sufficient to show that for smatt?, 3G’ andh() do not
intersect for. < A”. From Lemma A.4G(E) approaches the i, £**(1)) | A > A*}
aso2 goes to zero (holding* constant). From Lemma 5(d)(}) # 2 (1). Therefore
there exister?” such that for alb? < 2, h(2) anddG do not intersect. The fact that
h(x) andaG’ do not intersect fok < A” in economies witly, < o follows from the
property that. drift does not exceed inference drift. That is, the property that

nf {IG) == lI} > sup{| (. &)= (2, O, 0 €dG, (1, ¢) €dG}. (A3

A<A”

Therefore there are no equilibria with< 1”. Any equilibria (at least one exists), must
have the property that > 1”.
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