
considerable. The slow increase of power
with mass means that large fuel loads can 
be carried comparatively cheaply. So mass
dynamics in migrants are not determined
simply by the costs of flight, but must also
reflect the benefit of having sufficient fuel
reserves to compensate for vagaries of the
weather or other uncertainties. This makes it
easier to understand how the extraordinary
flight achievements of migrants might have
evolved. In the case of the knot, for instance,
it helps to explain how a small bird with a
lean mass of only 100 grams can fly up to
5,000 km from Britain to the Russian Arctic
in a single hop.

The immediate conclusion is that aero-
dynamic flight-power models (see refs 1 and
7, for example) do not predict total power
reliably under all conditions. One possible
explanation is that a bird with a full fuel load
has some biomechanical means of compen-
sating for the rise in aerodynamic power
needed to support its weight, perhaps by
manipulating its wing lift coefficient or by
varying the rate at which it moves its wings.
But it is far from obvious that any such mech-
anism could account for the discrepancy in
power. Rather, Kvist et al.3 suggest that the
efficiency with which muscles convert fuel 
to mechanical work also rises with load 
for individual birds. This proposition is 
consistent with a calculated rise in flight 
efficiency with body mass between birds of
different sizes1,2, and with an increase in 
efficiency with flight speed in starlings2. 
But it also raises a paradox: why can’t a bird
carrying a small fuel load operate at the high
efficiency that it can reach when carrying 
a large load? 

The situation with fuel load may be com-
plex, but the implications of Weimerskirch
and co-workers’ observations4 on the ben-
efits of formation flight are much clearer.
Reassuringly, in this case the predictions
based on aerodynamics do not fail. The idea
that flying in formation gives significant
aerodynamic benefit dates back to a 1914
paper by Wieselsberger9, at the time a doc-
toral student under Ludwig Prandtl at 
Göttingen. The date is significant: the paper
followed soon after Prandtl’s ‘lifting-line’
principle of wing action of the same year,
which described how vortices around the
wing and in its wake are responsible for 
aerodynamic lift, and as such was one of the 
fundamental results of modern aerodynam-
ics. The wake vortices force air downwards in
the region behind the wing, but air is forced
upwards outside the wake. Wieselsberger
realized that this principle should apply to
birds just as it did to aircraft, and that a group
of birds could exploit the updraft to fly more
cheaply if they adopted a V-shaped forma-
tion in which each bird flies in the up-current
generated by the one in front. 

Not all ornithologists have accepted the
aerodynamic explanation for this spectacular

flight phenomenon, however, and formation
flight has been the subject of an unresolved
debate between the ‘aerodynamic’ and
‘behavioural’ camps. Until now, neither side
of the argument has been complete. On 
one hand, the aerodynamic prediction has 
never been fully quantified because the mag-
nitude of the energy saving depends on the
group’s geometry, and the effects of flapping
flight or wingbeat synchronization have not 
been properly modelled. On the other, there
are probably benefits from travelling in a
cohesive, structured group, with a dominant
or experienced leading bird.

In their experiments, Weimerskirch et al.4

used heart rate in great white pelicans as a
proxy for energy expenditure10. The pelicans
were trained to fly after a motor boat and
light aircraft, from which measurements and
observations were made. The authors found
that pelicans in formation had a lower heart
rate and wingbeat frequency, and glided
more often. These are indications that the
birds required less mechanical and total
power to fly, so — qualitatively, at least —
confirm the aerodynamic prediction. It is
likely that aerodynamic and social benefits
coevolved to establish this common flight
behaviour in large birds.

Taken together, these two sets of measure-
ments3,4 add considerably to what we can say
about the energetics of bird flight. Aerody-

namic models are, in general, quite good at
predicting the biomechanical aspects of
flight, but they cannot yet be extended reli-
ably to predict total flight power. We know 
far too little of the internal physiological
processes in flight, and in particular about
the efficiency with which the flight muscles
generate mechanical work. It is not yet pos-
sible to predict this efficiency reliably, or 
to explain how it varies with mass or speed. 
If we are to understand the energetics of
flight in any bird under any conditions, or
are to be able to use simple aerodynamic
models to predict total flight power, we will
first have to know a lot more about how
flight muscle works. ■
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The drunkard’s walk, more soberly
known as a random walk, has long been
a mainstay of probability theory. The

drunkard starts from a lamppost and takes
random steps forwards or backwards. Then
where does he go? If the probability is the
same for both directions, he will return infi-
nitely often to the lamppost, but on average
will take infinitely long to get there. Mathe-
maticians have generalized this situation to a
random walk on a regular lattice in two, three
or even more dimensions. A random walk
happens on a discrete lattice, but an analo-
gous process occurs in continuous space.
This is brownian motion, in which the ran-
dom jiggling movements of particles in a
fluid suspension are attributed to collisions
with fluid molecules. A conjecture1 related to
both of these situations — first posed by Paul
Erdös and S. James Taylor in 1960 — has now
been proved2 in a paper in Acta Mathematica
by Amir Dembo, Yuval Peres, Jay Rosen and
Ofer Zeitouni.

For random walks in higher dimensions
there are some important differences. For
example, the drunkard returns to the lamp-
post with 100% probability for walks in one
and two dimensions, but with a lower prob-
ability for three dimensions or higher. If
you are lost in a desert and wander at ran-
dom, eventually you’ll get back to where
you started. But if you’re ‘Lost In Space’, you
may not. The theory of random walks goes
back to the late nineteenth century and 
the pioneers of combinatorial probability
theory. But the specific problem under dis-
cussion originated more than forty years
ago, when Erdös and Taylor posed a ques-
tion about random walks on a square lattice
in the plane. How many times does the
walker revisit the most frequently visited
site in the first n steps? In other words, how
many times does the drunkard go to his
favourite watering hole? 

Erdös and Taylor were able to make sig-
nificant progress towards an answer. They

Mathematics

Where drunkards hang out
Ian Stewart

The trail of a particle undergoing brownian motion might be unkindly
described as a drunken walk. A 40-year-old conjecture related to 
brownian motion and such random walks has finally been proved.
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proved that for a large number of steps, n, 
the number of visits to the most frequently
visited site lies between (log n)2/4p and 
(log n)2/p. They conjectured that the larger
of these numbers is the correct answer.
(Curious that p should turn up here, but
more on that later.) The methods used by
Dembo et al.2 to prove this conjecture are
taken from fractal geometry: the core of 
the proof is a study of the fine multifractal
structure of brownian motion. So their
results constitute an important and rigor-
ous application of fractals to probability 
theory and mathematical physics. Brown-
ian motion is no longer important in its
original physical context, but it has many
other applications, including some to the
financial sector.

In 1987, E. A. Perkins and Taylor
obtained upper and lower bounds analo-
gous to those of Erdös and Taylor for 
brownian motion in the plane. Given a
most-frequently-visited disc of fluid, they
tried to find the fraction of time during
which the randomly jiggling particle is
inside that disc. They proved that the answer
lies between a certain expression and the
same expression divided by four, and con-
jectured that the larger of these provides 
the correct answer. Their results were clear
analogues of those of Erdös and Taylor.
Dembo et al.2 also prove the Perkins–Taylor
conjecture, and again show that the upper
bound is the correct answer. Indeed, they
work mainly on brownian motion, and 

then transfer their results to random walks.
These results tell us a great deal about 

the statistical properties of these processes.
For example, mathematics can describe 
the probability distribution of fluctuations
(departures from the average behaviour),
which obey power-law statistics, and the
value of the limit determined by Dembo et al.
appears in the power laws governing their
behaviour. The authors also reveal some
finer detail. For example, they prove that the
most frequently visited points consistently
lie near the boundary of the region that the
random walk visits. It seems that the drunk-
ard’s favourite hangout is as far away from
the lamppost as he can get. 

Last year, the same authors studied
brownian motion in three dimensions,
where the key insight turned out to be a local-
ization effect. Spheres of fluid that are most
frequently visited gain most of their visits
during a relatively short interval of time.
Essentially, the drunkard gets inside the
sphere and stays there for a while. This does
not happen in two dimensions — instead,
the drunkard makes frequent excursions
away from the most frequently occupied
disc, but keeps returning to it. These excur-
sions occur on all length scales, which is
where fractal geometry comes in. The main
technical issue is how the lengths of these

excursions away from the disc, on a given
scale, relate to the fraction of time for which
the disc is occupied. This relationship is 
multifractal — it can be represented by a
family of fractals whose fractal dimension (a
measure of their roughness) is not constant3. 

Where does that p come from? As a 
fundamental constant in mathematics, p
turns up all over the place, from geometry 
to number theory. Often the connection to
its original definition involving circles is
obscure. But in this case there is a clue in 
the repeated reference to occupation of 
discs and spheres. Brownian motion is
isotropic: all directions are treated equally.
So the probability distributions associated
with brownian motion have circular sym-
metry. The same is approximately true for
random walks (Fig. 1) when the number of
steps, n, is large. Once circular discs enter the
analysis, p cannot be far away. But this is 
not something the drunkard would expect 
to stumble upon. ■
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Figure 1 Random walks and fractals. A contour
map of the territory covered by 500 random
walkers, who started together at the centre. The
different colours of the pixels reflect how often 
a pixel is visited. The roughness of the contour
surfaces appears to be the same however many
times they are visited. This ‘self-similarity’ is 
one of the defining features of fractals — the
idea that if we shrink or enlarge a fractal 
pattern its appearance should remain
unchanged. This random walk is isotropic, so 
its distribution has circular symmetry. The 
path of a particle undergoing brownian motion
in the plane is analogous to a random walk, and
a 40-year-old conjecture related to brownian
motion and random walks has just been proved
by Dembo et al.2.

The aim of ‘provenance studies’ is to
identify the geographical source of a
material by measuring some chemical

or physical property (a ‘signature’) that is
known to vary geographically. As they
describe in Proceedings of the National Acad-
emy of Sciences, English et al.1 have devel-
oped a method for finding the origin of
plant materials by means of their strontium
isotope ratio — a signature already widely
used as an environmental tracer by geolo-
gists, hydrologists, ecologists and archaeol-
ogists2–5. English et al. apply the method to
an archaeological mystery: the origin of the
big roof timbers at the famous ancient
Native American site of Chaco Canyon (Fig.
1, overleaf), which stands in a now-treeless
desert of the southwestern United States6.
The results demonstrate not only the 
existence of a complex regional economic 
system in one part of the ancient world, 
but also a new method that can be applied
more broadly.

Archaeologists had already worked out

other provenance methods to identify trade
networks and migration routes. In parti-
cular, geographical variation in the trace-
element composition and isotopic ratios 
of rocks and clays had been used to locate
sources of stone tools and pottery. For
instance, proto-Polynesian stone tools from
a site on Fiji were found to be made of 
obsidian from the island of New Britain
4,500 km to the west, proving the existence of
a long-distance trade network 3,000 years
ago7. As for biological materials, archaeolo-
gists have attempted to identify the sources
of human8 and animal teeth, but very little
work has been done on plant materials.

The main challenge in these studies is 
to select a signature that varies on a geo-
graphical scale appropriate to the problem 
of interest. For example, discriminating
between potential sources 100 km apart
requires a signature that varies in the envi-
ronment on that scale, rather than on a 
scale of 1,000 km (yielding no difference
between the potential sources) or of 1 km

Archaeology

Tree trail to Chaco Canyon
Jared Diamond

Strontium isotopes have been used to identify the sources of timber in
buildings around one thousand years old. The method can now help to
solve a range of other problems.
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