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Exact shapes of random walks in two dimensions

Gaoyuan Wei
Department of Chemistry, Peking University, Beijing 100871, People’s Republic of China

Received: 7 May 1995

Abstract

Since the random walk problem was first presented by Pearson in 1905, the shape of a
walk which is either completely random or self-avoiding has attracted the attention of
generations of researchers working in such diverse fields as chemistry, physics, biology and
statistics. Among many advances in the field made in the past decade is the formulation of the
three-dimensional shape distribution function of a random walk as a triple Fourier integral plus
its numerical evaluation and graphical illustration. However, exact calculations of the averaged
individual principal components of the shape tensor for a walk of a certain architectural type
including an open walk have remained a challenge. Here we provide an exact analytical
approach to the shapes of arbitrary random walks in two dimensions. Especially, we find that
an end-looped random walk surprisingly has an even larger shape asymmetry than an open
walk.

The shape of a random walk taking place in a d-dimensional space is often
described by d principal components arranged in descending order, ie.,
S$128,5,2 -+ 28, of the shape tensor S[7,11,15,17]. This tensor S is related to the
inertia tensor I of an n-vertex walk by the equality I = n(s*1 — S) where unit mass is
assumed for each vertex, 1 is the identify matrix, and s? is the trace of S, i.e., s? = tr(S)
with s historically termed the radius of gyration [3, 5], ie., the square root of the
arithmetic mean of n squared distances of the vertices from their center of mass. For
convenience, unit step length is further assumed for the walk.

A walk may be either completely random or self-intersecting [1-3, 5] (the large-n
limit of the gaussian model) or self-avoiding (Edwards model) [2,4,10,12,15,16]
and may have different architectural types [21] wusually specified by the
architecture or Kirchhoff matrix K. Let A denote the diagonal matrix of all n — 1
nonzero eigenvalues of K times n? The eigenpolynomials of A, ie,
P,_1(x)=|1+ xA | for an end-looped or dumbbell-like walk, i.e., two identical
large rings connected by a doubly-sized chain, may be written down with the use of
graph theory, with the result that D(x)= P,(x?) = U(x)U%*(x/2) B(x, — 1/3)
B(x, 2/3), where U(x) =4 sh(x/4)/x and B(x, a) = [ch(x/4) — a]/(1 — a). From the
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above eigenpolynomial, one can obtain an analytic expression for the function S,,(x)
defined as the large-n limit of tr(A + x*1)™™.

For arbitrary random walks in two dimensions, we find by using the method of Solc
and Gobush [9] that shape factors, i.e., the , defined as {S,)/{s*» which is the ratio
of the averaged principal component of S to the mean square radius of gyration,
and shape variance factors, the o, defined as ({(S2) — <{S,>*)/{(s*>?, are given
by 6,=1/24+(— 1), and o, = (1 + 3u,)/4 + ( — 1)*y, — 87, respectively. Here,
Um = Sm(0)/ST(0) and g, is defined as

0

I = S('"(O)JIxD(x +ix)| "V Im [ F(x + ix)] dx,

0

with F(x) = S;(x), F2(x) = S,(x) + 271 8$2(x) and Im(x + iy) denoting the imaginary
part of x + iy. Similarly, we can write down expressions for J, and o, for the d =3
case. However, a complication occurs in this case as it involves triple integrals over the
restricted domains of the rotation group SO(3), which are difficult to evaluate
accurately even by numerical means. Therefore, for random walks in a space with
3<d< o and for self-avoiding walks, the exact evaluation of §, or ¢, remains
a challenge. Numerical evaluations of §, and o, for two common types and one new
type of random walks in two dimensions, i.e., open, closed and end-looped walks,
based on the above general formulas have been made and the results are tabulated in
Table 1. We note that our general formulas reproduce the earlier results for a closed
random walk [9].

From Table 1, we find that the simulation results of Bishop and Michels [22] for
shape factors of 2D chains and rings of finite length (n = 64), i.e., 0.839 and 0.161 for
chains and 0.755 and 0.245 for rings, are very close to our exact values for open and
closed random walks; and that shape variance factors are in descending order, i.e.,
01 > 0,, for all three types of random walks, implying a broader distribution of the
largest principal component. For an end-looped random walk, it is seen from Table
1 that it is more elongated than other types of random walks and even more
asymmetrical than an open random walk though its average size is smaller than that
of the latter (with a shrinking factor, i.e., the ratio of its mean square radius of gyration
to that of the open walk, of 51/64 =~ 0.796875). This large shape asymmetry of the

Table 1
Shape and shape variance factors for open (1), closed (2) and end-looped (3)
random walks in two dimensions

Type J, 0, o, g,

1 0.832938 0.167062 0.369214 0.009090
2 0.754323 0.245677 0.155901 0.014739
3 0.852352 0.147648 0.439593 0.006567




154 G. Wei [Physica A 222 (1995) 152—154

end-looped random walk may have important implications for the improvement of
the rheological properties of end-looped linear polymers yet to be made or discovered.
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