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for unknown parameters in the context of dependent and possibly heteroskedas�

tic random variables� called subsampling� It works under very weak conditions

and avoids the pitfalls of having to choose a structural model to �t to observed

data� Appropriate simulation studies suggest that is has better small sample

properties than the GMM method� which also works under weak conditions and
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� Introduction

There has been considerable debate in the recent �nance literature whether stock returns

can be predicted from dividend yields� Various forms of the so�called e�ciency of mar�

kets hypothesis imply that all available information of future stock returns is contained in

a stock�s current price and therefore future returns should be completely unpredictable�

However� a number of recent studies appear to provide empirical support for the use of the

current dividend�price ratio� the so�called dividend yield� as a measure of expected stock

returns� See for example Roze� ��	
��� Campbell and Shiller ��	

�� Fama and French

��	

�� Hodrick ��		
�� and Nelson and Kim ��		��� The problem with such studies is that

stock return regressions face several kinds of statistical problems� among them strong de�

pendency structures and biases in the estimation of regression coe�cients� These problems

tend to make �ndings against the no predictability hypothesis appear more signi�cant than

they really are�

Having recognized this� Goetzmann and Jorion ��		�� argue that previous �ndings might

be spurious and largely due to the bad small sample behavior of commonly used inference

methods� They employ a bootstrap approach and conclude that there is no strong evidence

indicating that dividend yields can be used to forecast stock returns� One should note�

however� that their special approach is not shown to be backed up by theoretical properties�

Also� it requires a lot of custom�tailoring to the speci�c situation at hand� For other

scenarios� a di�erent tailoring would be needed�

We intend to help in resolving some of the disagreement by applying a new technique�

called subsampling� It has been shown to give correct results under very weak conditions�

including dependency and heteroskedasticity� Moreover� it makes use of the observed data

in a very intuitive and simple way and does not require any modi�cations to be applicable

in di�erent scenarios� The paper is organized as follows� In Section 
 we give a brief

description of the stock returns regression problem as well as a summary of previously used

approaches and corresponding �ndings� Section � introduces the proposed subsampling

method� Section � contains some practical details concerning the actual implementation�

We use a simulation study to evaluate small sample properties concerning stock return

regressions in Section �� In Section � we apply the subsampling method to three data

sets and present the results� Section � provides some additional insight dealing with a

reorganization of long�horizon returns and a joint test for multiple horizons� The paper

ends with some concluding remarks in Section 
�
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� Background and De�nitions

We will now describe the stock returns problem in a formal way and look at some of the

previous studies in more detail� Most of the empirical studies use monthly data� De�ne

the one�period real total return as Rt�� � �Pt�� � dt����Pt� where Pt is the end�of�month

real stock price and dt is the real dividends paid during month t� The total return can be

decomposed into capital and income return�

Rt�� � RC
t�� � R I

t�� � Pt���Pt � dt���Pt� ���

Since dividend payments are highly seasonal� usually a monthly annualized dividend series

Dt is computed from compounding twelve monthly dividends at the ��month Treasury bill

rate rt�

Dt � dt � �� � rt�dt�� � �� � rt��� � rt���dt�� � � � �� �� � rt��� � rt��� � � ��� � rt����dt���

Then annual dividend yield is de�ned as Yt � Dt�Pt� As a strong form of the e�ciency

of markets hypothesis� the historic random walk model speci�es that the returns Rt are

i�i�d� �independent and identically distributed� according to some unknown distribution�

Frequently� it is assumed that this distribution is known up to �nite number of parameters�

that is to say it belongs to a certain parametric family of distributions� Of course� this is

done for convenience� In general� one can never verify such a claim� The two most commonly

used families for this purpose are the normal and the lognormal families� It seems that the

latter is preferred for a number of reason� one of them being that stock returns are basically

by de�nition bounded below by ������ Indeed� the lognormal random walk model has a

long and illustrious history� and has become �the workhorse of the �nancial asset pricing

literature� �Campbell� Lo� and MacKinlay� �		��� One implication of this particular model�

but also other forms of the e�ciency of markets hypotheses� is that future returns would

be completely unpredictable� Especially� a linear regression model like the following

ln�Rt�k�t� � �k � �k�Dt�Pt� � �t�k�k

� �k � �k�Yt� � �t�k�k �
�

where ln�Rt�k�i� � ln�Rt����� � ��ln�Rt�k� is the continuously compounded k�period return�

would have a true �k coe�cient of zero� All of the afore�mentioned studies are concerned

with testing the the null hypothesis H� � �k � �� Usually a number of return horizons k

are considered� since for some theoretical reasons �e�g�� present value model� predictability

might be suspected to increase with the return horizon� Most studies are able to reject the






null hypothesis at all horizons considered� suggesting that future returns can be partially

forecasted using present dividend yields� The empirical evidence is strongest for so�called

long horizon returns beyond one year� that is for values k � �
 when using monthly data�

The longest horizon usually considered is four years� or k � �
�

It is clear that under the null hypothesis the stochastic behavior of the error variables

�t�k�k in �
� is completely determined by the stochastic behavior of the Rt process� In fact�

in that case we have �t�k�k � ln�Rt�k�i���k � Even under the random walk model � which

is stronger than the null hypothesis of �k � � � the �t�k�k are uncorrelated only for k � �� If

the data are sampled more �nely than the compound return interval� that is� for k � �� the

errors will always exhibit serial correlation due to the resulting overlap� For example� under

the random walk model they follow a moving average process of order k � �� or MA�k� ��

process� In case the log returns are correlated� or under the alternative hypothesis� the

�t�k�k can be arbitrarily serially correlated for all values of k� The estimation of �k can be

easily done by ordinary least squares� However� testing the null hypothesis� or assigning a

P�value to the observed ��k� is nontrivial for a number of reasons�

�� In the case of correlated residuals� like in the case of long�horizon regressions� the

usual OLS standard errors are not valid� since they are based on the hypothesis of

uncorrelated residuals�


� The independent variable in the regression �
� is predetermined but not exogenous�

That is to say that Yt is uncorrelated with the current error term �t�k�k but generally

not with past error terms �t�k�j�k � j � �� This is because

�t�k�j�k � ln�Rt�k�j�i�� �k � �k�Yt�j�

and the dividend yield series Yt is highly autocorrelated� or highly persistent� at

monthly intervals� It is well known that regressions with predetermined independent

variables can lead to biased� although consistent� estimates� A standard reference is

Stambaugh ��	
��� In the case of stock return horizons� the OLS estimates of ��k are

typically upward biased�

�� A second source of bias in the OLS estimates is the fact that the regressor behaves

like a lagged dependent variable� Pt appears on both the left and right hand side of

the regression equation �
��

In the remainder of the paper will discuss various inference methods for �k according to

two criteria� asymptotic consistency and small sample properties�
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Loosely speaking� asymptotic consistency means that we get the right answer if the

sample size is in�nity� For example� if we construct a test for H� � �k � � with nominal

signi�cance level � � ����� then the probability of falsely rejecting H� will tend to ����� as

the sample size tends to in�nity� Or� if we construct a con�dence interval for the unknown

parameter �k with nominal con�dence level �� � � ��	�� then the probability that �k will

be contained in the interval will tend to ��	�� as the sample size tends to in�nity� Of course�

in practice we never encounter an in�nite sample size� but asymptotic consistency is the

minimum required from a statistical inference method� If we do not get the right answer

in the ideal scenario �in�nite sample�� then there is no good reason to use in the harsh

reality ��nite sample�� For this reason we should restrict our focus to methods that are

asymptotically consistent under sensible conditions�

If for a given problem there was only one asymptotically consistent method� our choice

would be easy� However� typically this is not the case and we have to choose between

several competing methods� It makes sense then to consider small sample properties� that

is� we want to judge how close do various methods get to the right answer when only �nite

samples are available� The answer to this problem in general must be �it depends�� Indeed�

small sample properties depend on the true underlying data generating mechanism� which

is unknown� Since we therefore can never give a perfect answer� we must look at reasonable

and feasible data generating mechanisms that we believe are not too far from the truth� By

arti�cially generating data from known approximating models we can nowadays with the

help of fast computers conduct simulation studies� which allow us to gain valuable insight

into small sample properties�

Our philosophy is hence the following� For a given problem � in this paper the stock

return predictability problem � �nd inference methods that are asymptotically consistent

under not too restrictive conditions� Then distinguish between those methods via appro�

priate small sample simulation studies� using a reasonable data generating mechanism and

real�life sample sizes� Pick the inference method declared the �winner� by the simulation

studies as the one which we should entrust our real data the most�

��� The GMM Approach

A very common approach for making inference on �k in the context of dependent and pos�

sibly heteroskedastic observations is to correct the standard errors of regression coe�cients

estimates for serial correlation according to the generalized method of moments �GMM� by

Hansen and Hodrick ��	
�� and Hansen ��	

�� Most papers that follow this idea base the
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correction on the additional hypothesis that log returns are uncorrelated� in which case the

residuals of a k�horizon regression follow a simple MA�k � �� process�

The GMM method fares well in terms of asymptotic consistency� It has been shown to

converge to the right answer under weak and very general conditions �see above references��

Small sample properties� on the other hand� might pose a problem� Since GMM uses

asymptotic normality� centered at the true �k� it accounts neither for �nite sample biases of

��k nor for potential skewness to the right of the sampling distribution of ��k �e�g�� Goetzmann

and Jorion� �		��� In addition� there is evidence that in the context of serial correlation

the GMM corrections of the standard errors are often insu�cient in �nite samples� For

example� see Ferson and Foerster ��		��� Bekaert and Urias ��		��� and Politis� Romano�

and Wolf ��		��� We therefore expect the GMM approximation to the true sampling dis�

tribution of ��k to be centered at too small a value and having a right tail that is too short�

The consequence is that observed �positive� values of ��k will be judged as overly signi�cant

and hence tests for ��k will be biased towards false rejection of H�� These de�ciencies of the

GMM method were� among others� realized by Goetzmann and Jorion ��		�� and Nelson

and Kim ��		���

Two examples of studies employing the GMM method can be found in Fama and

French ��	

� and in Chapter � of Campbell� Lo� and MacKinlay ��		��� Either study

rejects the null hypothesis �k � � at conventional signi�cance levels� at least for return

horizons of one year and beyond�

��� The VAR Approach

An alternative approach is to estimate the sampling distribution of ��k under the null hy�

pothesis� and to use this estimated distribution to attach a P�value to the observed value

of ��k� The typical way of estimating the null sampling distribution involves simulating ar�

ti�cial return and dividend yield sequences� employing a data generating mechanism which

imposes the null hypothesis� A large number� B say� of such simulations are carried out�

For each outcome� the corresponding estimate ���
k is computed� The empirical distribution

of the B ���
k values then serves as the desired estimate of the sampling distribution of ��k

under the null� A one�sided P�value is given by the proportion of ���
k values that exceed

the observed statistic ��k� For a general reference on this idea see Noreen ��	
	�� There

have been two di�erent appropriate data generating mechanisms for stock return sequences

proposed in the literature�
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Campbell and Shiller ��	
	�� Hodrick ��		
�� Nelson and Kim ��		��� and Goetzmann

and Jorion ��		��� among others� consider a �rst�order vector autoregression �VAR� in at

least the following two variables� log return and dividend yield� Sometimes� additional vari�

ables are included� For example� Campbell and Shiller ��	
	� include a term corresponding

to earnings price ratio� Hodrick ��		
� includes the one�month Treasury�bill return relative

to its previous �
�month moving average which is denoted rbt� To describe his model� say�

let

Zt � �ln�Rt��E�ln�Rt�� Dt�Pt � E�Dt�Pt�� rbt�E�rbt��
T �

Then a �rst order VAR� or VAR���� is given by

Zt�� � AZt � ut��� ���

where A is a � x � matrix and ut is a ��dimensional white noise innovation sequence�

Hodrick ��		
� �ts this model to the observed data and then sets the row of the estimated

VAR��� matrix corresponding to log returns to zero� and the constant term corresponding to

log returns to the unconditional mean implied by the original VAR� Of course� specifying the

VAR parameters is not su�cient� as an innovation sequence ut has to be fed to the VAR

model� Since there is strong empirical evidence for return data to exhibit �conditional�

heteroskedasticity� Hodrick �ts a generalized autoregressive conditionally heteroskedastic

�GARCH� model to the innovations estimated by the VAR� For more details the reader is

referred to the original paper� He then generates arti�cial innovation sequences according

to the estimated GARCH process� where the innovations have a conditional normal distri�

bution� Using this approach� Hodrick also �nds evidence of predictability in stock returns�

both for short and long horizons�

Nelson and Kim ��		�� employ a similar method� simulating from a VAR model under

the null hypothesis� However� they randomize �tted innovations for the arti�cial innova�

tion sequences in order to better match the dispersion of true marginal distribution of the

innovations� The disadvantage of this method is that it destroys any potential dependence

in the innovation sequence� The study reports that the simulated distributions of the regu�

lar t�statistics are upward biased and that these biases should be taken into account when

making inference� However� even after a bias correction� the authors �nd some evidence for

predictability� especially when looking at post�war data after �	���

Unlike the GMM method� the VAR approach tries to capture the �nite sample dis�

tribution of ��k by generating arti�cial data having the sample size as the observed data�

It succeeds in correcting for both upward biases and skewness to some extent� as demon�

strated in Nelson and Kim ��		�� and Goetzmann and Jorion ��		��� However� for many
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�nancial data� using GARCH innovations with a conditional normal distribution �Hodrick�

�		
� tends to underestimate the tails of the true sampling distribution� See Remark ��� for

evidence on this claim� Underestimating the tails will result in overstating the signi�cance

of observed ��k values again� This might explain why the �nding of Nelson and Kim ��		��

who randomize �tted innovations are not as signi�cant as those of Hodrick ��		
�� On the

other hand� the small sample e�ect of destroying the correlation in the second moments of

the innovations is not clear�

The obvious shortcoming of the VAR approach is the use of a structural model� Asymp�

totic consistency will only be assured if VAR��� is the true model� This is doubtful� Of

course� how big the asymptotic mistake is depends on how far the true mechanism is away

from VAR���� The problem is magni�ed if a parametric model for the innovations� such as

GARCH������ is used� In addition� it is noteworthy that the VAR model is estimated from

monthly� nonoverlapping data� Small mistakes for k � � will therefore be magni�ed for

long horizons� such as k � �
� via adding up k one�month returns to construct a k�month

return�

Note that is very awkward to judge the small sample properties of the VAR method via

simulation studies� Hodrick ��		
� presents a simulation study that paints a very favorable

picture� The problem is that he uses VAR��� with GARCH����� innovations as the data

generating mechanism in the study� that is� he pretends to know what the true mechanism

is� Such a study is bound to be overly optimistic� To make a simple analogy� one should not

judge the small sample properties of the t�test by generating i�i�d� normal observations only�

On the other hand� one could easily arrive at an overly pessimistic answer by employing a

data generating mechanism that is far away from VAR��� in some sense�

��� A Bootstrap Approach

As an alternative to the VAR method� Goetzmann and Jorion ��		�� use a bootstrap

approach to generate arti�cial data sequences under the null hypothesis� The motivation is

that a model�free method such as the bootstrap will avoid any mistakes due a potentially

misspeci�ed structural model� Their particular bootstrap works as follows�

�� Form the empirical distribution of monthly total stock returns Rt and their associated

income returns RI
t � as de�ned in ���� from the observed data�


� Generate a pseudo return sequence R�
t i�i�d� according to the empirical distribution

of the observed total returns R� � � �Rn�

�



�� Subtract the contemporaneous income returns R I��
t to create a pseudo capital�return

series RC��
t � RC��

t � R �
t � R I��

t � Compound these to create a pseudo price series P �
t �

�� Create a pseudo dividend yield sequence Y �
t � Dt�P

�
t � in which the Dt are the actual

annual dividend �ows�

It is obvious that some custom�tailoring is employed here in the attempt of capturing the

relationship between price levels and dividends� The key problem with this approach is

seen in the fact that total returns are resampled at random� implying that returns are i�i�d�

according to some unknown distribution� while dividend �ows remain �xed� implying that

dividend payments are completely nonstochastic� While the �rst assumption is slightly

troublesome � the null hypothesis of a random walk is stronger than the null hypothesis of

no predictability � the second assumption seems unrealistic� Clearly� we do not for certain

what the dividend payments of a certain stock� or stock index� will be in the future� At least

to some extent� these payments will be determined by random factors� such as interest rates�

state of the overall economy� and events associated with the particular companies� For this

reason� the asymptotic consistency of this bootstrap approach is doubtful� Goetzmann and

Jorion ��		�� do not discuss the asymptotic properties of their method�

Note that Goetzmann and Jorion come to basically opposite conclusions as all previous

studies� They do not �nd strong statistical evidence in favor of predictability of stock

returns� P�values of the observed ��k values are typically slightly above ���� even for long�

term horizons�

� A New Approach

It has been almost two decades since Efron ��	�	� introduced the bootstrap procedure for

estimating sampling distributions of statistics based on independent and identically dis�

tributed �i�i�d�� observations� In practice� the bootstrap method generates so�called pseudo

sequences� or arti�cial sequences� by selecting single data points at random from the ob�

served sequence and joining them together� Then the statistic of interest �mean� variance�

regression coe�cient� etc�� is computed from the pseudo sequence� yielding a pseudo statis�

tic� This process is repeated a large number of times and the empirical distribution of

all individual pseudo statistics is used to �nd an approximation to the unknown sampling

distribution of the original statistic� A very nice introduction to the bootstrap can be found

in Efron and Tibshirani ��		���






It is well known that the bootstrap often gives more accurate approximations than

classical large sample approximations� like normal approximations� However� when the

observations are dependent this �classical� bootstrap no longer succeeds� Singh ��	
��

showed that Efron�s bootstrap fails to capture the dependence structure even for the sample

mean of m�dependent data� Following this observation� there have been several attempts

to modify and extend Efron�s idea to dependent data�

There are� broadly speaking� two approaches to using resampling methods for station�

ary dependent data� One is to apply Efron�s bootstrap to an approximate i�i�d� setting by

focusing on the residuals of some general regression model� Such examples include linear

regression �Freedman� �	
�� Freedman� �	
�� Wu� �	
�� Liu� �	

�� autoregressive time se�

ries �Efron and Tibshirani� �	
�� Bose� �	

�� nonparametric regression and nonparametric

kernel spectral estimation �H�ardle and Bowman� �	

� Franke and H�ardle� �		
�� In all

of the above situations the residuals are resampled� not the original observations� How�

ever� this method is restricted to relatively simple contexts where structural models are

both plausible and tractable� As a second approach� resampling methods for less restrictive

contexts have been suggested more recently� They are based on so�called �blocking� argu�

ments� in which the data are divided into blocks and these blocks� rather than individual

data values or estimated residuals� are resampled and joined together to form new pseudo

time series� Carlstein ��	
�� proposed non�overlapping blocks� whereas K�unsch ��	
	� and

Liu and Singh ��		
� independently introduced the  moving blocks� method which employs

overlapping blocks� Subsequent research seems to have favored this scheme�

As an alternative to bootstrap methods� Politis and Romano ��		�� proposed the sub�

sampling approach� Rather than resampling blocks from the original time series as ingre�

dients to generating new pseudo time series� each individual block of observations is looked

upon as a valid  subseries� in its own right� The motivation is as follows� Each block�

as a part of the original series� was generated by the true underlying probability mecha�

nism� It then seems reasonable to hope that one can gain information about the sampling

distribution of a statistic � like the least squares estimator ��k � by evaluating it on all

subseries� or  subsamples�� An attractive feature of the subsampling method is that it has

been shown to be asymptotically consistent under very weak assumptions� For example�

it can handle many of the counterexamples of the bootstrap� Apart from regularity and

dependency conditions� the only requirement� in the stationary setup� is that the sampling

distribution of the properly normalized statistic of interest has a nondegenerate limiting

distribution� The moving blocks method� on the other hand� has essentially been shown to

be valid for functions of linear statistics and smooth functionals only �see K�unsch ��	
	�

	



and B�uhlmann ��		���� Note that OLS estimators are linear statistics and hence could be

handled by the moving blocks bootstrap as well�

An extension of the subsampling method to the heteroskedastic� or nonstationary� case

was presented in Politis� Romano� and Wolf ��		��� This is an important result� since many

interesting time series are known to exhibit some kind of heteroskedasticity�

We will proceed to give a brief description of the subsampling method here in order to

make this paper self�contained� For more details and a derivation of theoretical properties�

the reader is referred to Politis and Romano ��		�� and Politis� Romano� and Wolf ��		���

Suppose f� � � � X��� X�� X�� � � �g is a sequence of real or vector�valued random variables�

de�ned on a common probability space and governed by a joint probability law P � The

goal is to construct a con�dence interval for some real�valued parameter � � ��P �� on

the basis of observing a �nite sample fX�� � � � � Xng� For example� in the case of the return

regression �
�� Xt is equal to the vector �ln�Rt�k�t�� �Dt�Pt�� and � is equal to the regression

coe�cient �k� Note that this theory can be generalized to multivariate or even functional

parameters� The time series Xt is assumed to satisfy a certain weak dependence condition�

the so�called strong mixing condition� This is a su�cient condition to ensure that we

gain enough additional information from a bigger sample and hence asymptotic theory go

through� Processes used to model �nancial time series� such as autoregressive processes�

typically satisfy the strong mixing condition�

Let ��n � ��n�X�� � � � � Xn� be an estimator of � and ��b�a � ��b�Xa� � � � � Xa�b��� be the

estimator of � based on the smaller block� or subsample� Xa� � � � � Xa�b��� The block size b

will be much smaller than the sample size n� De�ne Jb�a to be the sampling distribution

of �b ���b�a � ��� where �b is an appropriate normalizing constant� The corresponding

cumulative distribution function is then

Jb�a�x� � Probf�b���b�a � �� � xg� ���

The normalizing constant �b is needed to put the di�erences ��b�a � � �on the same scale�

as the di�erence ��n � �� since block estimates are based on a smaller sample size than the

estimate from the entire sample� Loosely speaking� the normalizing constant ensures that

both Jb�a and Jn�� have a nondegenerate limiting distribution� In most cases the proper

normalizing constant is simply the square root of the corresponding sample size� that is�

�b � b��� and �n � n���� But� other cases also exist� e�g�� see Politis and Romano ��		���

��



We want to estimate the sampling distribution of our estimator ��n� properly standard�

ized� namely

Jn���x� � Probf�n���n � �� � xg� ���

Indeed� if we knew it exactly� we could construct exact con�dence intervals for �� Since

this is the case in only the rarest of instances� we usually have to rely on some sort of

approximation� Typically� the approximations will become better and better as the sample

size increases� The most common approximation is the normal approximation� utilizing the

fact that in many scenarios Jn�� has a limiting normal distribution� Aided by modern com�

puter technology� statisticians have during the last twenty years developed computationally

intensive methods which for small samples often provide better approximations than the

normal one�

In order to describe the subsampling method� let Yb�a be the block of size b of the

consecutive data fXa� � � � � Xa�b��g� The observed sequence X�� � � � � Xn yields n� b�� such

blocks� The �rst one is Yb�� � fX�� � � � � Xbg� the last one is Yb�n�b�� � fXn�b��� � � � � Xng�

As de�ned before� ��b�a is equal to the statistic ��b evaluated at the data set Yb�a� The

subsampling approximation to Jn���x� is now given by

Ln�x� �
�

n � b � �

n�b��X
a��

�f�b���b�a � ��n� � xg� ���

where �f�g is the indicator function� Therefore� the subsampling approximation is simply

the proportion of properly standardized subsample statistics less than or equal to x�

The motivation behind the method is the following� For any a� Yb�a is a  true� subsample

of size b� Hence� the exact distribution of �b���b�a � �� is Jb�a� For large sample sizes� Jb�a

will be close to Jn�� for all indices a� at least in the stationary setup� In the context of

heteroskedastic observations the same will hold true under some regularity conditions �see

Politis� Romano� and Wolf� �		��� The empirical distribution of the n � b � � values of

�b���b�a� �� should then serve as good approximation to Jn��� The fact that we replace � by

��n�� in ��� does not a�ect the asymptotic properties� given some very weak conditions on

the block size b� Using the approximation ��� allows us to construct one�sided con�dence

con�dence intervals for � in the following way� A one�sided lower �� � interval is given by

ILOW � ���n�� � ���n cn��� ��� �� ���

and a one�sided upper �� � interval is given by

IUP � ���� ��n�� � ���n cn����� �
�

��



where cn�	� denotes a 	 quantile of the subsampling distribution Ln de�ned in ���� Two�

sided con�dence intervals can be constructed as the intersection of two one�sided intervals�

For example� the intersection of a lower and an upper one�sided 	�� interval yields a

two�sided 	�� con�dence interval� Such intervals are called equal�tailed because they have

approximately equal probability in each tail� As an alternative approach two�sided sym�

metric con�dence intervals can be constructed� Their name stems from the fact that they

extend equally far to the left as to the right of the estimate ��n� just like normal intervals do�

The common way to construct symmetric con�dence intervals is to estimate the two�sided

cumulative distribution function

Jn���j�j�x� � Probf�n
�����n�� � �

��� � xg� �	�

The subsampling approximation to Jn���j�j�x� is de�ned by

Ln�j�j�x� �
�

n� b � �

n�b��X
a��

�f�b
�����b�a � ��n��

��� � xg� ����

A two�sided symmetric ��� �� con�dence interval is then given by

ISY M � ���n�� � ���n cn�j�j��� ��� ��n�� � ���n cn�j�j��� ���� ����

where cn�j�j�	� denotes a 	 quantile of the subsampling distribution Ln�j�j de�ned in �����

Why is it useful to distinguish between equal�tailed and symmetric intervals! It is known

that symmetric intervals often enjoy enhanced coverage properties and� even in asym�

metric circumstances� can be shorter than equal�tailed intervals �e�g�� Hall� �	

�� Some

corresponding simulation studies can be found in Politis� Romano� and Wolf ��		�� and

Wolf ��		��� We will use symmetric subsampling intervals for the remainder of this paper�

It can be shown that under very weak conditions the subsampling method will yield

asymptotically correct inference� As far as con�dence intervals are concerned� this means

that as the simple size n increases to in�nity the actual coverage probability will tend to the

nominal level � � �� The only conditions needed to assure this property are the existence

of a nondegenerate limiting distribution for Jn��� a universal moment bound on the Xt� a

certain mixing condition� a bound on the amount of global heteroskedasticity� and some

requirements on the block size b� Detailed theorems can be found in Politis� Romano� and

Wolf ��		���

Remark ��� An important advantage of the subsampling method is the fact that is enough

to know about the existence of a limiting distribution� It does not have to be estimated in

�




practice� Numerous examples exist where the limiting distribution depends in a complicated

way on the underlying data generating mechanism� making inference very di�cult or even

impossible if explicit estimation of this distribution is necessary� One example is the area

of variance ratio tests� where the estimation of the limiting variance of the test statistic

is usually done under simplifying assumptions �e�g�� Lo and MacKinlay� �	

�� Another

example is given in Subsection ��
� where the goal is to make joint inference for a number

of return horizons� Some non��nance examples are discussed in Politis and Romano ��		���

A practical problem lies in choosing the block size b� To ensure the asymptotic properties

of the method it is only necessary that the block size b tend to in�nity with the sample

size n� but at a smaller rate� b � � and b�n � �� as n � �� Of course� this rule gives

us very little guidance for applications� Usually� we have a sample of �xed size n� Picking

b � n��� would be consistent with the above condition� but many other choices would be as

well� As to be expected� small sample properties depend on the actual choice of b �Politis�

Romano� and Wolf� �		�� among others�� with the dependency diminishing as the sample

size increases�

In some sense� the block size b might be called a hidden parameter� or model parameter�

Having to choose such a hidden parameter is a property that the subsampling method shares

with many other statistical inference methods� For example� for density estimation� typically

a bandwidth parameter has to be selected� When using GMM in the context of dependent

observations� again a bandwidth parameter has to be selected in using a kernel for estimating

the limiting covariance matrix� This problem sometimes seems to be swept under the rug in

the applied literature� Fama and French ��	

� and Campbell et al� ��		�� use the Hansen

and Hodrick ��	
�� kernel� weighting autocovariances up to lag k � � with weight one and

autocovariances beyond lag k with weight zero� This will produce a consistent estimator

of the limiting covariance matrix only under the null hypothesis of �k � � and under the

additional assumptions that the log returns are uncorrelated� If one is interested in �nding

con�dence intervals for �k or suspects returns to be correlated �there is evidence for small�

but signi�cant� correlation at the monthly horizon�� a more general kernel has to be used� In

that case� the choice of the bandwidth is not obvious� Andrews ��		�� compares a number

of kernels and suggests an automatic bandwidth selection procedure based on asymptotic

considerations� He �nds that the so�called Quadratic Spectral �QS� kernels dominates other

kernels� both in terms of asymptotic theory and small sample simulation studies� We will use

this kernel� in conjunction with Andrew�s bandwidth selection procedure� when comparing

GMM to subsampling in our simulation studies�

��



To deal with the problem of choosing the block size b for the subsampling method we

suggest a calibration technique which in a sense avoids having the �nd the �best� block

size�

� Calibration

One can think of the accuracy of an approximate or asymptotic con�dence procedure � such

as normal� bootstrap� or subsampling methods � in terms of its calibration �Loh� �	
���

Suppose we use the procedure to construct a con�dence interval with nominal con�dence

level ��	� We can denote the actual con�dence level by ���� 	 is known to us� � typically

is not� An asymptotic method only ensures that ��	 will tend to ��� as the sample size

tends to in�nity� For a �nite sample size� the two levels might not be the same� If we knew

the calibration function h � � � 	 � � � �� we could construct a con�dence region with

exactly the desired coverage� by selecting the value of 	 that satis�es h���	� � ���� For

example� if h���	
� � ��	�� then a con�dence interval with nominal level 	
� would be an

actual 	�� con�dence interval�

Fortunately� the calibration function h��� can be estimated� One way of doing this would

be to assume a parametric model with a known parameter ��� By then using a Monte Carlo

approach a natural estimate �h��� would be easy to �nd� One would generate many arti�cial

sequences� compute a �� 	 interval for each sequence� and take the proportion of intervals

that contain ��� Of course� if we were willing to assume a parametric model� why use a

model�free technique such as the subsampling method in the �rst place! It is therefore more

desirable to use a model�free data generating mechanism for the Monte Carlo approach� The

obvious choice is to use the bootstrap� We therefore generate arti�cial sequences from a

bootstrap distribution P �
n � then construct a con�dence interval from each generated pseudo

sequence� and observe how frequently the parameter ��n is contained in those intervals� In

the context of dependent data� we need to employ a bootstrap suitable for time series� The

moving blocks bootstrap �K�unsch� �	
	�� which was brie�y mentioned at the beginning of

Section �� lends itself to the task� It generates pseudo sequences X�
� � � � � � X

�
n by resampling

entire blocks from the original data and joining these together� rather than single data

points� Formally� let Yb�a be the block of size b of the data fXa� � � � � Xa�b��g� For simplicity

we assume that n � lb� for some integer l� Also� let P �
n denote the empirical distribution

of the blocks Yb��� Yb��� � � � � Yb�n�b��� Then a pseudo sequence is constructed by choosing

Y �
b��� � � � � Y

�
b�l i�i�d� from P �

n and concatenating them� In case n is not a multiple of b� we

��



use the same algorithm with the smallest l for which n 
 lb and truncate the so�obtained

sequences at n�

In case we want to apply the calibration scheme to the subsampling method� we can

do it conditional on a reasonable block size� This means that we �x a sensible block size

and calibrate the subsampling intervals using that particular block size� This eliminates

the problem of �nding the �best� block size� In some scenarios we will have a pretty good

idea what a reasonable block size will be� either from prior experience or related simulation

studies� Otherwise� see Remark ��� below� To describe the calibration technique more

formally we can use the following algorithm�

Description of the Calibration Method�

�� Generate K pseudo sequences X�k
� � � � � � X�k

n � according to a moving blocks bootstrap

distribution P �
n �

For each sequence� k � �� � � � � K�

�a� Compute an ��	 level con�dence interval CIk
���� for a grid of values of 	 in the

neighborhood of ��


� For each 	 compute �h��� 	� � "f��n � CIk���g�K�

�� Interpolate �h��� between the grid values�

�� Find the value of 	 satisfying �h��� 	� � �� ��

�� Construct a con�dence interval with nominal level �� 	�

Remark ���

�� The moving blocks bootstrap in step � of the above algorithm requires its own block

size bMB� The choice of this block size has a second order e�ect and is therefore not

very important� However� if an automatic selection method is preferred� a �nested

bootstrap� can be used� That means that we would use the moving blocks bootstrap

in both steps � and �a of the above algorithm with the same block size bMB� limiting

the grid of 	 values to 	 � �� Repeating this algorithm for a number of bMB values�

we then would select the value bMB which yields estimated coverage closest to �� ��

��




� If we use the calibration scheme to calibrate the subsampling method we need to

start out with a reasonable block size b� In situations where we do not know what

a reasonable block size is� we can use the following idea� In the same way as the

actual con�dence level can be regarded as function of the nominal con�dence level

�conditional on a �xed block size�� it can be considered as a function of the block

size �conditional on a �xed nominal level�� Fixing the nominal level at the desired

level� that is� choosing 	 � �� we can therefore estimate the block calibration function

g � b� �� �� using an analogous calibration algorithm�

�� Generate K pseudo sequences X�k
� � � � � � X�k

n � according to a moving blocks boot�

strap distribution P �
n �

For each sequence� k � �� � � � � K�

�a�� Compute an ��� level con�dence interval CIkb � for a selection of block sizes

b�


� For each b compute �g�b� � "f��n � CIkb g�K�

A reasonable block size will then satisfy �g�b� � �� ��

�� Two�sided equal�tailed intervals should always be computed as the intersection of two

separately calibrated one�sided intervals� Particularly if the sampling distribution of

��n is asymmetric� the amount of calibration needed in the lower tail can be very

di�erent from the one needed in the upper tail�

As an illustration of how we would use the calibration method see Figure � for a real�life

example� The goal is to construct a 	�� con�dence interval for ��� for the S#P ��� post�

war data� starting December �	��� We estimate the calibration function h��� at the discrete

points ��	�� ��	�� � � � � ��		� and linearly interpolate in between� Our estimate tells us that

we should construct a con�dence interval using a nominal level of ��	�� In the calibration

algorithm we used bMB � ��� in step �� and b � �� in step �a�� The latter was estimated

according to Remark ���� item 
��

Since the calibration is based on the estimated calibration function �h��� rather than

the true function h���� calibrated intervals still are not exact� It can be easily shown that

calibrating an asymptotically correct procedure� such as subsampling con�dence intervals�

results in an asymptotically correct procedure again� In the context of i�i�d� random vari�

ables it is known that calibrated con�dence intervals have better asymptotic properties than

uncalibrated intervals �e�g�� Efron and Tibshirani� �		��� In technical terms� calibrated con�

�dence intervals for i�i�d� data are generally second�order correct versus �rst�order correct�

��
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Figure �� S#P ��� post�war data� return horizon is k � �
� Estimates of h���	� for a grid

of 	 values f����� ���
� � � � � ���g with linear interpolation in between� The estimate of the

calibration function h��� tells us that if we want a con�dence interval for ��� with actual

level �� � � ��	� we should use a nominal level �� 	 � ��	��

Corresponding results for dependent data are work in progress and have not yet been ob�

tained� Simulation studies support the conjecture that also in the context of dependent data

calibrated intervals generally give better results� see Politis� Romano� and Wolf ��		���

To be fair� calibration techniques can be used to potentially enhance any asymptotic

method� An obvious idea in the context of stock return regressions would be to to use a

similar calibration method as the above algorithm for GMM con�dence intervals� It is the

purpose of this paper� however� to compare our new results with previous results in the

literature� Therefore� we use the use the �simple� GMM method� as employed by Fama

and French ��	

� and Campbell et al� ��		��� in our simulation studies�

� A Small Sample Comparison

As noted before� we use two criteria to judge inference methods for �k� asymptotic consis�

tency and small sample properties� We already mentioned that both GMM and subsampling

��



give asymptotically correct results under reasonable conditions� while VAR and the Goetz�

mann and Jorion ��		�� bootstrap only work under restrictive conditions� In this section we

compare the small sample properties of the GMM and subsampling via simulation studies�

We do not include VAR in the studies� since it is based on a structural model� Through

a simulation study we could therefore make it look arbitrarily good � by choosing the

data generating mechanism equal to the VAR model � or arbitrarily bad � by choosing

a data generating mechanism very di�erent from the VAR model� The Goetzmann and

Jorion ��		�� bootstrap is not included� since it needs actual dividend �ows for which we

could not think of a good data generating mechanism� Also� since this bootstrap makes the

doubtful assumption that dividend �ows are nonstochastic� it is not really a competitor for

GMM and subsampling on asymptotic grounds�

For our simulations we need a data generating mechanism which jointly models log

returns and dividend yields� While we will never know the true mechanism that yielded the

observed data� we aim for a reasonable approximation that includes at least two important

features� On the one hand� the bias of ��k due to the predetermined predictor� and on the

other hand� the increasing autocorrelation of the residuals with the return horizon k� Both

features are captured by the VAR model� Note that it is not a contradiction to employ a

model for a simulation study which we earlier criticized when used for making inference�

GMM as well as subsampling are model�free inference methods and do not exploit the

dubious knowledge of a structural model� A misspeci�cation of the model has much less

impact in a simulation study than when used for making inference� To give an example�

we use VAR with GARCH innovations for our simulation to capture the correlation of the

second moments of the �tted innovations� This leaves us to make a choice for the conditional

distribution of the GARCH model� Two choices are normal and t with a small number of

degrees of freedom� In the latter case� the tails are heavier� This has a big e�ect when

making inference� that is� judging the signi�cance of observed statistics� For a simulation

study� however� the impact is negligible�

To be speci�c we will use a �rst�order VAR model as our data generating mechanism�

jointly modeling log return and dividend yield as the vector Xt � �ln�Rt�� Dt�Pt�� Let

Zt � �ln�Rt�� E�ln�Rt��� Dt�Pt � E�Dt�Pt���
T �

Then our VAR��� is given by

Zt�� � AZt � ut��� ��
�

where A is a 
 x 
 matrix and ut is a white noise innovation process� We �t this model to

the observed data by least squares and then impose the null hypothesis by setting the �rst

�




row of A equal to zero� Since we are concerned with a simulation study only� we do not have

to worry about the overall mean and can set it equal to zero without loss of generality� As a

simulation study involving calibrated intervals is computationally very expensive� we only

consider the shorter post�war data sets� where the case of predictability seems somewhat

stronger anyway� We look at three di�erent data sets� the NYSE equal�weighted and value�

weighted indices and the S#P ��� index� all starting in December �	��� Both of the NYSE

data sets consist of �
� basic observations ��
$�	�� to �
$�	
��� the S#P ��� data set

consists of ��� observations ��
$�	�� to ��$�		��� The �tted VAR parameters for the data

sets under consideration are presented in Table ��

To generate arti�cial X�
t sequences we need vector innovation sequences u�t � We use

the the constant correlation model� which was introduced by Bollerslev ��		��� Namely� let

Ht � Et�ut��u
T
t��� be the conditional covariance matrix of the �rst order VAR in ��
� with

typical element hij�t� Both conditional variances follow an ARMA����� process�

hii�t � �i � �ihii�t�� � �iu
�
i�t� i � �� 
� ����

To model the covariance of Ht� the six parameters of ���� are estimated simultaneously

with a constant correlation coe�cient ��� by maximum likelihood� assuming conditional

normality� see Bollerslev ��		�� for more details� The parameter estimates for our three

di�erent data sets are reported in Table 
� To judge the size of the � parameters we should

mention that we �tted the models on the percentage scale� that is� a typical monthly return

was on the order of ��� to ��
 rather than ����� to ����
� Of course� the � and � parameters

do not depend on the choice of scale�

Arti�cial innovation sequences u�t as input to the VAR model ��� are then generated by

computing the Cholesky decomposition of the conditional covariance matrix� CT
t Ct � Ht�

and setting u�t�� � CT
t �t��� where �t is a sequence of independent bivariate standard normal

random variables� Note that when actually generating those sequences we discard the �rst

��� observations to avoid start�up e�ects�

Long horizon return data X�
t can now be created by feeding the arti�cial innovation

sequences u�t into the �tted VAR models� after imposing the null hypothesis by setting the

�rst row of the VAR matrices equal to zero� We also discard the �rst ��� observations

in this step� Finally� the arti�cial long horizons returns are compounded according to the

formula ln�R�
t�k�i� � ln�R�

t��� � � � �� ln�R�
t�k�� As said before� we only consider the post�

war case for the simulation study� When generating the arti�cial data we obviously need

to match the original sample sizes� which are bigger for the S#P ��� data� For every

scenario we generate ���� arti�cial sequences and compute a 	�� calibrated subsampling
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interval for �k for each sequence� For comparison� we also compute con�dence intervals

using the GMM method� employing the so�called Quadratic Spectral kernel� This kernel

was found to have some optimality properties by Andrews ��		��� The bandwidth for the

kernel was chosen according to the automatic selection procedure of Andrews ��		��� We

report the percentage of intervals which contain the true parameter zero in Table �� Note

that we carried out the same simulations using conditional innovations having a �scaled�

t�distribution with � degrees of freedoms� The results were essentially the same and are

therefore not reported�

One can see that� except for k � �� the GMM intervals undercover consistently� In

other words� the GMM method is biased towards falsely rejecting the null hypothesis� For

long horizons of k � �� and k � �
� the estimated coverage can be o� by almost 
��� On

the other hand� the subsampling intervals perform very well for k � 
�� If anything� they

tend to overcover somewhat� However� the strong dependency structures of long horizon

regressions also cause the subsampling intervals to undercover� though far less so than the

GMM intervals� For k � ��� the estimated coverage is o� between 
� and ��� for k � �
�

it is between �� and ��� Based on these simulation studies� the small sample properties

of the subsampling method appear superior to those of the GMM� This is consistent with

previous simulation studies concerning regression coe�cients in the context of dependent

observations� See Politis� Romano� and Wolf ��		�� for a related study employing some

di�erent data generating mechanisms and obtaining similar results�

Remark ��� In Section 
 we commented on the danger of simulating from a VAR model

using GARCH innovation sequences in order to compute a P�value for an observed statistic

such as ��k� Even in case the �tted VAR model is a good approximation� if the tails of the

arti�cial GARCH sequences are too light� then one overestimates the signi�cance of observed

statistics� As a quick check for such a violation� it is interesting to compare large quantiles

of the �tted innovations of the three VAR models from Table � with the matching quantiles

from the corresponding GARCH models from Table 
� We approximated the sampling

distribution of 	�� and 		� quantiles estimated from GARCH innovation sequences by

generating ���� GARCH sequences of the proper length for each of the three models�

There are six marginal distributions altogether� since each of the three VAR models has a

two�dimensional innovation sequence� The �rst dimension corresponds to log return� while

the second dimension corresponds to dividend yield� Table � presents the results concerning

the 	�� quantile� It compares the observed statistic computed from the �tted innovations

with the sampling distribution of the statistic when the innovations follow the estimated
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GARCH process� The sampling distribution is characterized by the mean� the median� and

the �� and 		� quantiles �based on ���� repetitions�� The results concerning the 		�

quantile of the innovations were very similar� with identical P�values� and are therefore not

presented�

Except for the log return innovations of the model for the S#P ��� data� all 	��

quantiles of the �tted innovations are much too big to be compatible with the corresponding

GARCH distribution� The two�sided P�values� based on the percentage of simulated 	��

quantiles less than or greater than the observed statistic� are equal to zero� For the log

return innovations of the model for the S#P ��� data� the observed quantile is too small�

again the two�sided P�value is equal to zero� Clearly� this is evidence that using conditionally

normal GARCH innovation sequences tends to underestimate the tails of the true sampling

distribution and can give misleading results when used to assess the signi�cance of observed

statistics� In addition� it appears that for multivariate models one should model each

dimension separately�

� A New Look at Return Regressions

Given the previous discussions� it seems worthwhile to apply the subsampling methodology

to stock return regression� Unlike the VAR method and the Goetzmann and Jorion ��		��

bootstrap approach it is asymptotically consistent under reasonable conditions� On the

other hand� our simulation study indicates that it has better small sample properties than

the GMM method employed by Fama and French ��	

� and Campbell et al� ��		���

We use three di�erent data sets which have been previously analyzed in the literature�

Fama and French ��	

� and Nelson and Kim ��		�� report regressions of log returns for

value�weighted and equally weighted stock portfolios based on the CRSP �les for NYSE

stocks� Goetzmann and Jorion ��		�� use monthly data on the S#P ��� index� In ac�

cordance with the majority of the literature� we consider return horizons of �� �
� 
�� ���

and �
 months� Both of the NYSE data sets consist of �
� basic observations ��
$�	
� to

�
$�	
��� the S#P ��� data set consists of 
�
 observations ��
$�	
� to ��$�		��� Notice

that for return regressions the sample size is reduced by the return horizon k� In addition�

we also look at post�war data� There appears to be a strong consensus that the time series

properties of stock data di�er signi�cantly in the pre� and post�war periods� In particular�

predictability seems to be mostly a post�war phenomenon �e�g�� Hodrick� �		
� Nelson and
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Kim� �		��� Both of the NYSE post�war data sets consist of �
� basic observations ��
$�	��

to �
$�	
��� the S#P ��� data set consists of ��� observations ��
$�	�� to ��$�		���

Our strategy is to construct 	�� con�dence intervals for the regression parameter �k

and to check whether zero is contained in the intervals or not� We use two�sided symmetric

con�dence intervals �see end of Section �� in conjunction with the calibration technique

described in Section �� For the reader interested in the details of the implementation

some remarks are in order� They refer to the Description of the Calibration Method from

Section ��

	 We used the moving blocks bootstrap with block size bMB � ��� to generate the

pseudo sequences in step ��

	 To �nd reasonable block sizes for the subsampling method we estimated the block

calibration function g��� ��how does actual coverage depend on the block size used!���

The so chosen block sizes were between b � �� and b � ���� with the great majority

of them between b � �� and b � �
�� The block sizes were larger for the entire data

sets than for the post�war data sets�

	 A practical issue is the number K of bootstrap samples that we generate in order to

estimate the calibration function h���� We chose K � �����

The resulting con�dence intervals are listed in Table � and Table ��

From the tables we can see that there is no evidence for predictability for horizons of ��

�
� and 
� months� as zero is contained in all corresponding con�dence intervals� For the

horizon of �� months� the �ndings are inconclusive� Of the complete�data intervals� the two

NYSE index intervals contain zero� while the S�P ��� interval does not� Of the post�war

data intervals� only the equal�weighted NYSE index interval contains zero� the other two

do not� For the horizon of �
 months� there appears to be evidence for predictability� None

of the intervals contain zero� except for the post�war data set of the equal�weighted NYSE

index� In general� the case for predictability seems somewhat stronger for the post�war

data�

At this point� it is natural to ask two questions� First� the simulation study in Section �

suggests some undercoverage of subsampling intervals at long horizons� due to the very

strong correlation of the residuals� How much does this evidence take away from the case for

predictability that can be made at the four year horizon from the above results! Secondly�

we always look at �ve return horizons simultaneously� namely k � �� �
� 
�� ��� and �
� If







we are more interested in the overall null hypothesis of no predictability rather than in

individual hypotheses concerning particular horizons� it seems preferable to derive a test

for the joint null hypothesis of �� � ��� � ��� � ��� � ��� � �� This avoids the usual

pitfalls of multiple testing�

We will deal with both questions in the next section�

� Additional Looks at Return Regressions

��� A Reorganization of the Long�Horizon Regression

Since the compound k�period return is simply the sum of k one�period returns� the numer�

ator of the regression coe�cient �k in equation �
� is the same as

Cov�ln�Rt��� � � � �� ln�Rt�k�� �Dt�Pt��� ����

Under the assumption of stationarity the covariance ���� is identical to

Cov�ln�Rt���� �Dt�Pt� � � � �� �Dt�k���Pt�k����� ����

which is the numerator of %�k in the following� reorganized regression

ln�Rt��� � %�k � %�k��Dt�Pt� � � � �� �Dt�k���Pt�k���� � ut��� ����

The test H� � �k � � is therefore equivalent to the test H� � %�k � �� This fact has been

recognized by Hodrick ��		
�� among others� The advantage of the latter test is that� under

the null hypothesis� the stochastic behavior of the error terms ut�� in ���� is determined

by the behavior of the one�period returns ln�Rt��� only� regardless of the horizon k� Hence�

the problem of increasing correlation in the error terms due to an increasing return horizon

is eliminated� Remember that� again under the null hypothesis� the error terms �t�k�k in the

regression �
� behave like an MA�k � �� process� at least under the additional assumption

of uncorrelated returns�

Hodrick ��		
� carries out this alternative test� using critical values obtained by sim�

ulating from a VAR model which imposes the null hypothesis� He still �nds evidence for

predictability at horizons of one year and beyond� The problem is that the critical values

might be too small� since the conditionally normal GARCH innovations of the VAR model

tend to underestimate the tails of the true sampling distribution�


�



To provide an alternative view point we apply the subsampling method� The method of

inference about %�k is� of course� identical to the method of inference about �k� Results for

the post�war data are reported in Table �� Notice that all con�dence intervals contain zero�

and therefore not even at the four year horizon a case for predictability could be made�

Results for the complete data were analogous �zero contained in all intervals� and are not

reported�

��� A Joint Test for Multiple Return Horizons

We now turn to the problem of making joint inference about � � ���� ���� ���� ���� ����� The

null hypothesis of interest is that � � ��� �� �� �� ��� The joint estimation is easily done by

combining the individual estimates for each horizon into a vector� However� the joint infer�

ence is more complicated� Under reasonable conditions� the vector �� � ����� ����� ����� ����� �����

will have a limiting normal distribution� centered at �� Obviously� the limiting covariance

matrix is not diagonal and can therefore not be estimated by simply combining the indi�

vidual variance estimates� To make matters worse� the explicit estimation of the � by �

covariance matrix of �� requires along the way the estimation of the �� by �� covariance

matrix of ����� ���� � � � � ����� ������ This appears not a promising endeavor with sample sizes

on the order of ���� Hodrick ��		
� runs into this problem when he tries to estimate the

limiting covariance matrix by GMM but �nds that �simultaneous estimation of the �ve

equations � � � results in failure of the GMM matrix to be positive de�nite�� Since in this

instance the limiting covariance matrix cannot be estimated� Hodrick is unable to test the

null hypothesis of � � ��� �� �� �� ���

Fortunately� the subsampling methodology can be extended to handle multivariate pa�

rameters without much di�culty and avoids the problem of explicit estimation of the lim�

iting distribution� The crux of the method is the same as in the univariate parameter case�

outlined in Section �� In the notation of that section� assume now that � is parameter in

IRp� with p � �� Also� ��n is the estimator of � based on the entire sample� and ��b�a the esti�

mator based on the block of data Xa� � � � � Xa�b��� We estimate the �multivariate� sampling

distribution of �n���n� �� by the empirical distribution of the n� b� � subsample statistics

�b���b�a � ��n�� a � �� � � � � n � b � �� With the help of a norm k�k on IRp we can then �nd

a con�dence region for � quite easily � obvious norm choices are the Euclidean norm or

the sup norm� Suppose we want a �� � con�dence region for �� An asymptotically correct

region is given by the collection of all vectors �
�

that satisfy

�n
�����n � �

�

��� � cn�k�k��� ��� ����


�



Here� cn�k�k����� is an ��� quantile of the univariate �normed� subsampling distribution

Ln�k�k having distribution function

Ln�k�k�x� �
�

n � b � �

n�b��X
a��

�f�b
�����b�a � ��n

��� � xg� ��
�

See Politis� Romano� and Wolf ��		�� for corresponding theoretical results�

While it would be cumbersome to explicitly write down a such�de�ned con�dence region�

it is trivial to check whether a speci�c vector �
�

is contained in the region� All we have to

do is check condition ����� For our application of stock return regressions� we are obviously

interested in the vector ��� �� �� �� ��� Also� for this application the proper normalizing

constant is again simply the square�root of the sample size� that is� �b � b��� and �n � n����

The problem of choosing the block size b is analogous to the univariate case� We can

use the same remedy� the calibration technique described in Section �� The modi�cations

of the algorithm outlined there should be obvious� Note that to do step 
� the explicit

computation of the con�dence region in step �a� is not really needed� All we have to do is

check whether �� is contained in the region which� as just pointed out� is an easy matter�

When applying this method to the joint vector � for stock return regression we should

be concerned with the magnitudes of the individual coe�cients� Note that ��k naturally will

increase with the return horizon k� as we are predicting a k�horizon compounded return� It

therefore seems sensible to standardize by dividing by the return horizon� We thus use the

following modi�ed Euclidean norm

k���� ���� � � � � ����kmod �
q
��
�

� ������
�� � � � �� ������
�� � ��	�

The results for the post�war data are reported in Table 
� For all three data sets a

block size of b � 
� was used� Since the reader might wish some more details rather

than simply whether the vector ��� �� �� �� �� is contained in the corresponding con�dence

region� we decided to give the following information� The observed norm gives the numerical

value of
������� � �� ����� �� � � � � ����� ��

���
mod

� with k�kmod as de�ned in ��	�� The observed P�

value reports the percentage of subsample statistics b���
�����b�a � ��n

���
mod

exceeding the scaled

observed norm n���
�����n � �

���
mod

� Finally� the cut�o� point says how small the observed P�

value has to be to be deemed signi�cant at the �� level by the calibration technique of

Section �� In other words� if the observed P�value is bigger than the cut�o� point� then the

vector ����������� is contained in the 	�� con�dence region�


�



Note that for all three data sets the observed P�value is substantially bigger than the

cut�o� point for the �� level� Hence� for all three data sets ��� �� �� �� �� is contained in the

	�� con�dence region or� equivalentyly� the null hypothesis of no joint predictability is not

rejected� Note that the results for the complete data were identical ���� �� �� �� �� contained

in all three 	�� con�dence regions� and no closer details are reported�

� Conclusions

In this article we presented a new statistical tool to make inference in the context of depen�

dent and possibly nonstationary observations� as needed when examining the predictability

of stock returns from dividend yields� The gist of the new method� called subsampling�

is to recompute the statistic of interest on smaller blocks of the entire data sequence to

approximate the sampling distribution of the estimator based on the complete data� This

enables us to construct asymptotically correct con�dence regions for unknown parameters

under very weak conditions�

When comparing the subsampling method with previous approaches for testing the pre�

dictability of stock returns� we found it more trustworthy than the VAR approach and

Goetzmann and Jorion�s ��		�� bootstrap on grounds of asymptotic consistency� A simula�

tion study revealed that� for a reasonable data generating mechanism� subsampling appears

to have better small sample properties than GMM� which is a valid competitor in terms of

asymptotic properties�

We applied the subsampling method to three di�erent data sets� the NYSE equal� and

value�weighted indices and the S#P ��� index� We considered complete data sets �starting

in �
$�	
�� as well as post�war data �starting in �
$�	���� and included �ve return horizons

ranging between one month and four years� We did not �nd any evidence for predictability

for short and medium horizons� but �ndings at the four�year horizon appeared signi�cant�

However� mild undercoverage of subsampling con�dence intervals for long horizons due to

very strong dependencies in the residuals� as suggested by our simulation study� and the

issue of multiple testing cast some doubt on this evidence�

A reorganization of long�horizon returns� avoiding increasing correlation in the residuals

by means of summing dividend yields rather than returns� resulted in insigni�cant outcomes

for all horizons� Moreover� a joint test for all �ve return horizons also failed to �nd any

evidence� We therefore conclude that no strong case for the predictability of stock returns

from dividend yields can be made�


�



REFERENCES

Andrews� D� W� K� ��		��� Heteroskedasticity and autocorrelation consistent covariance

matrix estimation� Econometrica ��� 
��&
�
�

Bekaert� G� and Urias� M� S� ��		��� Diversi�cation� integration and emerging market

closed�end funds� Journal of Finance �� 
��&
�	�

Bollerslev� T� ��		��� Modeling the coherence on short run nominal exchange rates� a

multivariate GARCH model� Review of Economics and Statistics ��� �	
&����

Bose� A� ��	

�� Edgeworth correction by bootstrap in autoregressions� Annals of Statistics

��� ���	&��

�

B�uhlmann� P� ��		��� Blockwise bootstrapped empirical process for stationary sequences�

Annals of Statistics ��� 		�&���
�

Campbell� J� Y� and Shiller� R� J� ��	
	�� The dividend�price ratio and expectations of

future dividends� Review of Financial Studies �� �	�&


�

Campbell� J� Y� and Shiller� R� J� ��	

�� The dividend ratio model and small sample bias�

A Monte Carlo study� Economics Letters� ��� �
�&����

Campbell� J� Y�� Lo� A� W�� and MacKinlay� A� C� ��		��� The econometrics of �nancial

markets� Princeton University Press�

Carlstein� E� ��	
��� The use of subseries methods for estimating the variance of a general

statistic from a stationary time series� Annals of Statistics ��� ����&���	�

Efron� B� ��	�	�� Bootstrap methods� Another look at the jackknife� Annals of Statistics

�� �&
��

Efron� B� and Tibshirani� R� J� ��	
���� Bootstrap methods for standard errors� con�dence

intervals� and other measures of statistical accuracy� Statistical Science �� ��&���

Efron� B� and Tibshirani� R� J� ��		��� An introduction to the bootstrap� Chapman # Hall�

New York�

Fama� E� and French� K� ��	

�� Dividend yields and expected stock returns� Journal of

Financial Economics ��� �&
��

Ferson� W� E� and Foerster S� ��		��� Finite sample properties of the generalized method

of moments in tests of conditional asset pricing models� Journal of Financial Economics

�	� 
	&���


�



Franke� J� and H�ardle W� ��		
�� On bootstrapping kernel spectral estimates� Annals of

Statistics �
� �
�&����

Freedman� D� A� ��	
��� Bootstrapping regression models� Annals of Statistics �� �
�
&

�


�

Freedman� D� A� ��	
��� On bootstrapping two�stage least�squares estimates in stationary

linear models� Annals of Statistics ��� 

�&
�
�

Goetzmann� W� N� and Jorion� P� ��		��� Testing the predictive power of dividend yields�

Journal of Finance ��� No� 
� ���&��	�

Goetzmann� W� N� and Jorion� P� ��		��� A longer look at dividend yields� Journal of

Business 	�� No� ��

H�ardle� W� and Bowman� A� ��	

�� Bootstrapping in nonparametric regression� Local

adaptive smoothing and con�dence bands� Journal of the American Statistical Associa�

tion ��� ��
&����

Hall� P� ��	

�� On symmetric bootstrap con�dence intervals� Journal of the Royal Statis�

tical Society B �
� No� �� ��&���

Hansen� L� and Hodrick� R� ��	
��� Forward exchange rates as optimal predictors of future

spot rates� Journal of Political Economy� ��� 

	&
���

Hansen� L� ��	

�� Large sample properties of generalized method of moments estimation�

Econometrica �
� ��
	&�����

Hodrick� R� J� ��		
�� Dividend yields and expected stock returns� alternative procedures

for inference and measurement� Review of Financial Studies �� No� �� ���&�
��

Kendall� M� G� ��	���� Note on bias in the estimation of autocorrelation� Biometrika ���

���&����

K�unsch� H� R� ��	
	�� The jackknife and the bootstrap for general stationary observations�

Annals of Statistics ��� �
��&�
���

Liu� R� Y� ��	

� Bootstrap procedures under some non�iid models� Annals of Statistics

�	� ��	�&���
�

Liu� R� Y� and Singh� K� ��		
�� Moving blocks jackknife and bootstrap capture weak

dependence� In Exploring the limits of bootstrap� ed� by LePage and Billard� John

Wiley� New York�







Loh� W��Y� ��	
��� Calibrating con�dence coe�cients� Journal of the American Statistical

Association� ��� ���&��
�

Lo� A� W� and MacKinlay� A� C� ��	

�� Stock market prices do not follow random walks�

Evidence from a simple speci�cation test� Review of Financial Studies �� ��&���

Nelson� C� R� and Kim� M� J� ��		��� Predictable stock returns� the role of small sample

bias� Journal of Finance ��� No� 
� ���&����

Noreen� E� W� ��	
	�� Computer intensive methods for testing hypotheses� An introduction�

John Wiley� New York�

Politis� D� N� and Romano� J� P� ��		��� Large sample con�dence regions based on sub�

samples under minimal assumptions� Annals of Statistics ��� 
���&
����

Politis� D� N� Romano� J� P�� and Wolf� M� ��		��� Subsampling for heteroskedastic time

series� To appear in Journal of Econometrics�

Roze�� M� ��	
��� Dividend yields are equity risk premium� Journal of Portfolio Manage�

ment ��� �
&���

Singh� K� ��	
��� On the asymptotic accuracy of Efron�s bootstrap� Annals of Statistics ��

��
�&��	��

Wu� C� F� ��	
��� Jackknife� bootstrap and other resampling methods in regression analysis�

Annals of Statistics ��� �
��&�����


	



Table �� Parameter estimates for VAR matrix

This table presents least squares estimates for the VAR matrix A of the following �rst�order

vector�autoregressive model� Zt�� � AZt � ut��� Here� Zt is the joint vector of log return

and dvidend yield� Zt � �ln�Rt� � E�ln�Rt��� Dt�Pt � E�Dt�Pt���
T � and ut is white noise�

The estimates are based on monthly post�war data starting in December �	���

NYSE equal�weighted
 ������� to ������	

A �

�
� ����� ������

���
� ��	
�

�
A

NYSE value�weighted
 ������� to ������	

A �

�
� ����
 �����


���
� ��	
�

�
A

S�P �


 ������� to 
������

A �

�
� ����� �����

���

 ��	
�

�
A

��



Table 
� Parameter estimates for GARCH model

This table presents parameter estimates for the GARCH����� model for the white noise

innovation sequence ut of the VAR� Let Ht � Et�ut��u
T
t��� be the conditional covariance

matrix with typical element hij�t� Both conditional variances follow an ARMA����� process�

hii�t � �i � �ihii�t�� � �iu
�
i�t� i � �� 
�

The conditional covariance is determined by a constant correlation coe�cient ��� in the

following way� h���t �
p
h���t h���t ���� All parameters are estimated simulatenously via

maximum likelihood� The estimates are based on monthly post�war data starting in De�

cember �	���

NYSE equal�weighted
 ������� to ������	

Cond� Variance �i �i �i ���

h���t ����
� ����
 ��
�� �����


h���t ������ ����
 ���	�

NYSE value�weighted
 ������� to ������	

Cond� Variance �i �i �i ���

h���t ������ ����
 ��	
� ������

h���t ��� ���	 ����� ��	��

S�P �


 ������� to 
������

Cond� Variance �i �i �i ���

h���t 
���

 ���
	 ��
�� ���



h���t ������ ���

 ��
�	

��



Table �� Estimated coverage probabilities

This table presents estimated coverage probabilities of nominal 	�� con�dence intervals�

The data generating process is a VAR with GARCH����� innovations� The null hypothesis

of no predictability is enforced by setting the �rst row of the VAR matrix equal to zero�

Hence� the true value of �k is equal to zero for all return horizons k� Two types of con�dence

intervals are considered� GMM intervals and calibrated symmetric subsampling intervals�

The GMM uses the Quadratic Spectral kernel with the automatic bandwidth selection pro�

cedure of Andrews ��		��� Estimated coverage probabilities are based on ���� simulations

for each scenario�

NYSE equal�weighted
 ������� to ������	

Horizon GMM Subsampling Target

k � � ��	� ��	� ��	�

k � �
 ��
� ��	� ��	�

k � 
� ��
� ��	� ��	�

k � �� ��

 ��	� ��	�

k � �
 ���
 ��	� ��	�

NYSE value�weighted
 ������� to ������	

Horizon GMM Subsampling Target

k � � ��	� ��	� ��	�

k � �
 ��
� ��	� ��	�

k � 
� ��

 ��	� ��	�

k � �� ���
 ��	
 ��	�

k � �
 ���� ��

 ��	�

S�P �


 ������� to 
������

Horizon GMM Subsampling Target

k � � ��	� ��	� ��	�

k � �
 ��
	 ��	� ��	�

k � 
� ��
� ��	� ��	�

k � �� ��
� ��	� ��	�

k � �
 ���	 ��	� ��	�

�




Table �� VAR innovation 
��� quantile � GARCH model vs� Observed statistic

This table compares the observed ��	� quantile of the estimated VAR innovations with

the sampling distribution of the corresponding GARCH����� model� The GARCH�����

model was obtained via maximum likelihood from the estimated innovations� The sampling

distribution is characterized by the ���� quantile� the mean� the median� and the ��		

quantile� The 
�sided P�value tests the null hypothesis that the GARCH����� model gave

rise to the �tted innovations�

NYSE equal�weighted
 ������� to ������	

���� quantile Mean Median ��		 quantile Observed 
�sided P�value

Log returnd ���

 
���� 
���	 
���� ����� �

Dividend yield ����� ����� ����� ����	 ����	 �

NYSE value�weighted
 ������� to ������	

���� quantile Mean Median ��		 quantile Observed 
�sided P�value

Log returnd ����
 ��	
� ��	
� 
�
�� ����� �

Dividend yield ����� ����� ����� ����
 ����� �

S�P �


 ������� to 
������

���� quantile Mean Median ��		 quantile Observed 
�sided P�value

Log return ������ �
��

 �����
 ���
�� ����� �

Dividend yield ����
 ����� ����� ����� ����� �

��



Table �� ��� con�dence intervals for �k
 Complete data

This table presents 	�� con�dence intervals for the return regression coe�cient �k� together

with the estimated coe��cient ��k� We use monthly data� and various return horizons k are

considered� The con�dence intervals are calibrated symmetric subsampling intervals� They

are based on the complete data� starting in December �	
��

NYSE equal�weighted
 ������	 to ������	

Horizon ��k 	�� CI

k � � ���
 ������� ��
��

k � �
 ���
 �����
� �
��	�

k � 
� 	��	 ������� 

�	� �

k � �� ���
	 ������� 
���
�

k � �
 ����� �
���� 
	�
��

NYSE value�weighted
 ������	 to ������	

Horizon ��k 	�� CI

k � � ��
� ����
�� ���	�

k � �
 ���� ������� 	�

�

k � 
� 
�	� ������� 
�����

k � �� ���	� ������� 
�����

k � �
 ����
 �	���� 
��	��

S�P �


 ������	 to 
������

Horizon ��k 	�� CI

k � � ��
	 ������� ���
�

k � �
 ���� ��
�
�� 	��
�

k � 
� ���� �����
� ������

k � �� 
��� �
�
�� ����
�

k � �
 ����� ������ ������

��



Table �� ��� con�dence intervals for �k
 Post�war data

This table presents 	�� con�dence intervals for the return regression coe�cient �k� together

with the estimated coe��cient ��k� We use monthly data� and various return horizons k are

considered� The con�dence intervals are calibrated symmetric subsampling intervals� They

are based on the post�war data� starting in December �	���

NYSE equal�weighted
 ������� to ������	

Horizon ��k 	�� CI

k � � ��

 ����	
� �����

k � �
 ���� �����		� 
�����

k � 
� 
��� ��
����� ���	��

k � �� ����
 �����	�� ������

k � �
 ���
� �������� ����
�

NYSE value�weighted
 ������� to ������	

Horizon ��k 	�� CI

k � � ���� ������� ��

�

k � �
 ���� ����

� ������

k � 
� ����� ������� 
�����

k � �� ���
� ����
� 
�����

k � �
 ����� ������ 
��
��

S�P �


 ������� to 
������

Horizon ��k 	�� CI

k � � ���
 �����
� �����

k � �
 ���
 ����		� ������

k � 
� 
�

 �����
� �
��
�

k � �� ���

 ������ 
��
��

k � �
 ���

 ����	� 

�	��
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Table �� ��� con�dence intervals for %�k
 Post�war data

This table presents 	�� con�dence intervals for the return regression coe�cient %�k of the

reorganized regression ���� which avoids additional correlation in the residuals for long

return horizons� Also� the estimated coe�cient �%�k is presented� We use monthly data� and

various return horizons k are considered� The con�dence intervals are calibrated symmetric

subsampling intervals� They are based on the post�war data� starting in December �	���

NYSE equal�weighted
 ������� to ������	

Horizon �%�k 	�� CI

k � � ��

� ����	
� �����

k � �
 ����� �����	� ��
��

k � 
� ����	 ����
�� ��

�

k � �� ����� ������� �����

k � �
 ����� ������� ���
�

NYSE value�weighted
 ������� to ������	

Horizon
�%�k 	�� CI

k � � ����
 ������� ��

�

k � �
 ����� ������� ��
��

k � 
� ���

 ������� �����

k � �� ����� ������� �����

k � �
 ����	 ������� �����

S�P �


 ������� to 
������

Horizon �%�k 	�� CI

k � � ���
� �����
� �����

k � �
 ����� ������� ���
�

k � 
� ����
 ������� ���
�

k � �� ����� ������� �����

k � �
 ����� ������� �����

��



Table 
� Joint test for �� � ��
 � � � � � ��� � �
 Post�war data

This table presents results for the joint test of all individual regression coe��

cients being equal to zero� The observed norm gives the numerical value of������� � �� ����� �� � � � � ����� ��
���
mod

� with k�kmod as de�ned in ��	�� The observed P�value

reports the percentage of subsample statistics b���
�����b�a � ��n

���
mod

exceeding the scaled ob�

served norm n���
��� ��n � �

���
mod

� Finally� the cut�o� point says how small the observed P�value

has to be to be deemed signi�cant at the �� level by the calibration technique of Section ��

In other words� if the observed P�value is bigger than the cut�o� point� then the vector

����������� is contained in the 	�� con�dence region� The results are based on the post�war

data� starting in December �	���

NYSE equal�weighted
 ������� to ������	

Observed Norm Observed P�value Cut�o� point for ���� test

���
� ����
 ���
�

NYSE value�weighted
 ������� to ������	

Observed Norm Observed P�value Cut�o� point for ���� test

��	
� ���
� �����

S�P �


 ������� to 
������

Observed Norm Observed P�value Cut�o� point for ���� test

��
�� ��
�
 ���
�

��


